共查询到14条相似文献,搜索用时 147 毫秒
1.
基于模糊神经网络PID控制的污水处理应用研究 总被引:1,自引:1,他引:1
针对活性污泥污水处理系统具有复杂的非线性和时变性,传统的控制方法存在着精度不高,自适应能力差等缺点,提出一种模糊神经网络PID控制方法,将模糊神经网络与PID相结合,既发挥了PID控制的优势,又增加了模糊神经网络自学习和处理定量数据的能力,并且其中采用了动态递归神经网络对污水处理系统进行模型辨识。该控制方法能够快速、有效地使曝气池中溶解氧浓度达到期望值,并且具有较好的控制效果与控制精度。仿真结果验证了该控制方法的有效性和正确性。 相似文献
2.
3.
4.
针对城市污水处理过程溶解氧浓度难以精确控制的问题,提出了一种基于区间二型模糊神经网络(interval type-2 fuzzy neural networks,IT2FNN)的溶解氧浓度控制方法。先将IT2FNN应用在城市污水处理过程溶解氧浓度控制器的设计,获得了一种IT2FNN溶解氧浓度控制器。后采用自适应学习算法在线调整控制器的参数,提高了控制器的自适应能力。最后将提出的IT2FNN溶解氧浓度控制器应用于基准仿真2号模型(benchmark simulation model no.2,BSM2)平台,结果表明,IT2FNN控制器能够实现第5分区溶解氧浓度精确控制,具有较好的控制效果。 相似文献
5.
在常规T-S模糊神经网络的基础上加入动态递归元件,提出了递归T-S模糊模型的神经网络。在系统辨识中采用无监督聚类算法和动态反向传播算法训练该递归神经网络的参数,给出了该递归网络的逼近性证明。辨识效果与常规T-S模糊模型作比较,说明递归T-S模糊模型的神经网络在非线性系统辨识中表现出更好的性能。 相似文献
6.
针对污水处理生化除磷过程中出水总磷难以实时达标的问题,提出了一种基于模糊神经网络(fuzzy neural network,FNN)的出水总磷控制方法。首先,通过分析污水处理生化除磷机理,确定了控制器的操作变量为生化反应池第五分区外部碳源(external carbon, EC)与溶解氧(dissolved oxygen, DO)传递系数。其次,设计了一种基于FNN的出水总磷控制器,采用梯度下降算法更新控制器参数;最后,将基于FNN的出水总磷控制器应用于污水处理过程基准仿真平台(benchmark simulation model No.1,BSM1),实验结果表明,基于FNN的出水总磷控制器能够保证出水总磷的达标排放,具有较好的控制效果。 相似文献
7.
针对活性污泥污水处理过程溶解氧浓度控制问题,提出一种基于自组织模糊神经网络(SOFNN)的控制方法。该神经网络控制器依据激活强度和互信息理论在线动态增长和修剪规则层神经元,以满足实际工况的动态变化。同时,采用梯度下降算法在线优化隶属函数层中心、宽度和输出权值,以保证SOFNN的收敛性。进一步通过Lyapunov稳定性理论对SOFNN学习率进行分析,给出控制系统稳定性证明。最后在国际基准仿真平台BSM1上进行实验验证。实验结果显示,与PID、模糊逻辑控制(FLC)和固定结构FNN等控制策略相比,SOFNN在跟踪精度、控制平稳性和自适应能力上更具有优势。 相似文献
8.
针对非线性动态系统的控制问题,提出了一种基于自适应模糊神经网络(adaptive fuzzy neural network,AFNN)的模型预测控制(model predictive control, MPC)方法。首先,在离线建模阶段,AFNN采用规则自分裂技术产生初始模糊规则,采用改进的自适应LM学习算法优化网络参数;然后,在实时控制过程,AFNN根据系统输出和预测输出之间的误差调整网络参数,从而为MPC提供一个精确的预测模型;进一步,AFNN-MPC利用带有自适应学习率的梯度下降寻优算法求解优化问题,在线获取非线性控制量,并将其作用到动态系统实施控制。此外,给出了AFNN-MPC的收敛性和稳定性证明,以保证其在实际工程中的成功应用。最后,利用数值仿真和双CSTR过程进行实验验证。结果表明,AFNN-MPC能够取得优越的控制性能。 相似文献
9.
化工过程系统往往具有很强的非线性。针对含有大量序列数据的化工过程建模,当序列数据作为深层神经网络输入时,往往权重系数过多、训练难度增大。而递归神经网络通过在不同时间步间共享参数,更适用于对序列数据的处理。作者研究了递归神经网络在化工动力学建模中的应用,探讨了化学反应中物质浓度的时序变化,反应动力学参数回归,工业油田轻烃裂解过程模拟以及操作条件优化等3种应用场景。从预测精度和计算速度方面,验证了递归神经网络方法在化工过程建模中的优越性。 相似文献
10.
11.
针对污水处理过程出水氨氮(ammonia nitrogen,NH4-N)难以实时检测的问题,提出了一种基于区间二型模糊神经网络(interval type-2 fuzzy neural networks,IT2FNN)的软测量方法,建立了出水NH4-N的软测量模型,实现了出水NH4-N的实时检测。首先,采集和预处理相关过程变量的实际运行数据,通过主元分析法筛选出与出水NH4-N相关性较强的过程变量。其次,利用IT2FNN建立所选变量与出水NH4-N的软测量模型,通过梯度下降算法对模型相关参数进行修正。最后,将基于IT2FNN的出水NH4-N软测量模型应用于实际污水处理过程。实验结果表明,提出的出水NH4-N软测量方法不仅能够实现污水处理过程出水NH4-N的实时检测,而且具有较高的检测精度。 相似文献
12.
软测量建模能够有效地解决生产过程中在线分析仪表测量滞后大、价格昂贵、维护保养复杂等问题。目前,基于数据驱动的神经网络是软测量建模的主要工具之一。而在建模数据的采集过程中,主导变量的采集相对辅助变量要困难得多,由此产生了大量缺失标签的数据。但传统的软测量建模方法却忽视了这些无标签数据,只利用少量的有标签数据建模,从而影响了模型的预测精度。为了解决标签缺失的问题,采用最近邻算法对无标签数据进行伪标记,同时设计了由卷积操作与门限循环单元神经网络(GRU)结合的网络结构来进一步利用无标签数据,提取不同时刻数据中的动态特征,提高神经网络的预测精度。最后将该方法应用于丙烯精馏塔塔顶丙烷浓度的预测,实验结果表明该模型能有效处理非线性动态系统的标签缺失问题,具有更高的预测精度。 相似文献
13.
Soft-sensing modeling can effectively solve the problems of large measurement lag, high price, and complex maintenance of online analytical instruments in the production process. At present, neural network based on data-driven is one of the main tools of soft sensor. In the process of modeling data collection, the collection of dominant variables is much more difficult than that of auxiliary variables, resulting in a large amount of unlabeled data. However, traditional soft sensor modeling methods ignore these unlabeled data and only use a small amount of labeled data for modeling, which has negative effect on the prediction accuracy of the model. To solve the problem of label missing, the nearest neighbor algorithm is used to pseudo label the unlabeled data. At the same time, a network structure is designed by combining convolution operation and gated recurrent unit neural network (GRU) to further utilize the unlabeled data, extract the dynamic feature from data at different time, and improve the prediction accuracy of the neural network. Finally, the method is applied to the prediction of propane concentration on the top of propylene distillation column. The results show that the model can solve the problem of label missing in the nonlinear dynamic system and has higher prediction accuracy. 相似文献