首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 147 毫秒
1.
基于模糊神经网络PID控制的污水处理应用研究   总被引:1,自引:1,他引:1  
针对活性污泥污水处理系统具有复杂的非线性和时变性,传统的控制方法存在着精度不高,自适应能力差等缺点,提出一种模糊神经网络PID控制方法,将模糊神经网络与PID相结合,既发挥了PID控制的优势,又增加了模糊神经网络自学习和处理定量数据的能力,并且其中采用了动态递归神经网络对污水处理系统进行模型辨识。该控制方法能够快速、有效地使曝气池中溶解氧浓度达到期望值,并且具有较好的控制效果与控制精度。仿真结果验证了该控制方法的有效性和正确性。  相似文献   

2.
污水处理过程的模糊神经网络控制   总被引:4,自引:0,他引:4  
模糊神经网络(FNN)技术的迅速发展及其理论的不断完善为其在各个领域的应用奠定了基础。分析了FNN用于污水处理系统过程控制的可行性和必要性。简述了模糊系统和神经网络在污水处理中应用的现状。指出针对不同污水处理工艺建立不同综合(集成)智能控制系统是污水生物处理过程控制的主要研究方向,同时应加强对污水处理的活性污泥数学模型、通用性预测与故障分析系统、“软测量”技术及在线生物传感器等相关理论与技术的研究。  相似文献   

3.
基于模糊递归神经网络的污泥容积指数预测模型   总被引:2,自引:3,他引:2       下载免费PDF全文
许少鹏  韩红桂  乔俊飞 《化工学报》2013,64(12):4550-4556
污泥容积指数(SVI),一个关键的污泥沉降性能评价指标。针对污水处理过程中污泥膨胀关键水质参数污泥容积指数难以准确在线测量,且实验室取样测量方法时间久、精度低,提出了一种改进型的模糊递归神经网络(HRFNN)用来预测污泥容积指数的变化,通过在网络第三层加入含有内部变量的反馈连接来实现输出信息的反馈。实验结果表明,与其他模糊神经网络相比,该网络的规模小、精度高,处理动态信息的能力明显加强。  相似文献   

4.
韩红桂  刘峥  乔俊飞 《化工学报》2018,69(3):1182-1190
针对城市污水处理过程溶解氧浓度难以精确控制的问题,提出了一种基于区间二型模糊神经网络(interval type-2 fuzzy neural networks,IT2FNN)的溶解氧浓度控制方法。先将IT2FNN应用在城市污水处理过程溶解氧浓度控制器的设计,获得了一种IT2FNN溶解氧浓度控制器。后采用自适应学习算法在线调整控制器的参数,提高了控制器的自适应能力。最后将提出的IT2FNN溶解氧浓度控制器应用于基准仿真2号模型(benchmark simulation model no.2,BSM2)平台,结果表明,IT2FNN控制器能够实现第5分区溶解氧浓度精确控制,具有较好的控制效果。  相似文献   

5.
在常规T-S模糊神经网络的基础上加入动态递归元件,提出了递归T-S模糊模型的神经网络。在系统辨识中采用无监督聚类算法和动态反向传播算法训练该递归神经网络的参数,给出了该递归网络的逼近性证明。辨识效果与常规T-S模糊模型作比较,说明递归T-S模糊模型的神经网络在非线性系统辨识中表现出更好的性能。  相似文献   

6.
张璐  张嘉成  韩红桂  乔俊飞 《化工学报》2020,71(3):1217-1225
针对污水处理生化除磷过程中出水总磷难以实时达标的问题,提出了一种基于模糊神经网络(fuzzy neural network,FNN)的出水总磷控制方法。首先,通过分析污水处理生化除磷机理,确定了控制器的操作变量为生化反应池第五分区外部碳源(external carbon, EC)与溶解氧(dissolved oxygen, DO)传递系数。其次,设计了一种基于FNN的出水总磷控制器,采用梯度下降算法更新控制器参数;最后,将基于FNN的出水总磷控制器应用于污水处理过程基准仿真平台(benchmark simulation model No.1,BSM1),实验结果表明,基于FNN的出水总磷控制器能够保证出水总磷的达标排放,具有较好的控制效果。  相似文献   

7.
周红标 《化工学报》2017,68(4):1516-1524
针对活性污泥污水处理过程溶解氧浓度控制问题,提出一种基于自组织模糊神经网络(SOFNN)的控制方法。该神经网络控制器依据激活强度和互信息理论在线动态增长和修剪规则层神经元,以满足实际工况的动态变化。同时,采用梯度下降算法在线优化隶属函数层中心、宽度和输出权值,以保证SOFNN的收敛性。进一步通过Lyapunov稳定性理论对SOFNN学习率进行分析,给出控制系统稳定性证明。最后在国际基准仿真平台BSM1上进行实验验证。实验结果显示,与PID、模糊逻辑控制(FLC)和固定结构FNN等控制策略相比,SOFNN在跟踪精度、控制平稳性和自适应能力上更具有优势。  相似文献   

8.
针对非线性动态系统的控制问题,提出了一种基于自适应模糊神经网络(adaptive fuzzy neural network,AFNN)的模型预测控制(model predictive control, MPC)方法。首先,在离线建模阶段,AFNN采用规则自分裂技术产生初始模糊规则,采用改进的自适应LM学习算法优化网络参数;然后,在实时控制过程,AFNN根据系统输出和预测输出之间的误差调整网络参数,从而为MPC提供一个精确的预测模型;进一步,AFNN-MPC利用带有自适应学习率的梯度下降寻优算法求解优化问题,在线获取非线性控制量,并将其作用到动态系统实施控制。此外,给出了AFNN-MPC的收敛性和稳定性证明,以保证其在实际工程中的成功应用。最后,利用数值仿真和双CSTR过程进行实验验证。结果表明,AFNN-MPC能够取得优越的控制性能。  相似文献   

9.
化工过程系统往往具有很强的非线性。针对含有大量序列数据的化工过程建模,当序列数据作为深层神经网络输入时,往往权重系数过多、训练难度增大。而递归神经网络通过在不同时间步间共享参数,更适用于对序列数据的处理。作者研究了递归神经网络在化工动力学建模中的应用,探讨了化学反应中物质浓度的时序变化,反应动力学参数回归,工业油田轻烃裂解过程模拟以及操作条件优化等3种应用场景。从预测精度和计算速度方面,验证了递归神经网络方法在化工过程建模中的优越性。  相似文献   

10.
针对污水处理过程溶解氧浓度难以控制的问题,提出了一种基于自组织T-S模糊神经网络的控制方法。其实质是采用模糊规则层激活强度的方法,根据实际环境自适应的对神经元进行调整,构造合适的控制结构,从而提高控制精度。同时采用梯度下降法对控制器的各个参数进行实时调整。该控制器运用在污水处理基准仿真模型中进行实验,结果表明,提出的SO-TSFNN控制方法能够较好地实现对溶解氧浓度的控制,具有较好的自适应性。  相似文献   

11.
基于区间二型模糊神经网络的出水氨氮软测量   总被引:1,自引:0,他引:1       下载免费PDF全文
针对污水处理过程出水氨氮(ammonia nitrogen,NH4-N)难以实时检测的问题,提出了一种基于区间二型模糊神经网络(interval type-2 fuzzy neural networks,IT2FNN)的软测量方法,建立了出水NH4-N的软测量模型,实现了出水NH4-N的实时检测。首先,采集和预处理相关过程变量的实际运行数据,通过主元分析法筛选出与出水NH4-N相关性较强的过程变量。其次,利用IT2FNN建立所选变量与出水NH4-N的软测量模型,通过梯度下降算法对模型相关参数进行修正。最后,将基于IT2FNN的出水NH4-N软测量模型应用于实际污水处理过程。实验结果表明,提出的出水NH4-N软测量方法不仅能够实现污水处理过程出水NH4-N的实时检测,而且具有较高的检测精度。  相似文献   

12.
杨逸俊  王振雷  王昕 《化工学报》2020,71(12):5696-5705
软测量建模能够有效地解决生产过程中在线分析仪表测量滞后大、价格昂贵、维护保养复杂等问题。目前,基于数据驱动的神经网络是软测量建模的主要工具之一。而在建模数据的采集过程中,主导变量的采集相对辅助变量要困难得多,由此产生了大量缺失标签的数据。但传统的软测量建模方法却忽视了这些无标签数据,只利用少量的有标签数据建模,从而影响了模型的预测精度。为了解决标签缺失的问题,采用最近邻算法对无标签数据进行伪标记,同时设计了由卷积操作与门限循环单元神经网络(GRU)结合的网络结构来进一步利用无标签数据,提取不同时刻数据中的动态特征,提高神经网络的预测精度。最后将该方法应用于丙烯精馏塔塔顶丙烷浓度的预测,实验结果表明该模型能有效处理非线性动态系统的标签缺失问题,具有更高的预测精度。  相似文献   

13.
YANG Yijun  WANG Zhenlei  WANG Xin 《化工学报》2021,71(12):5696-5705
Soft-sensing modeling can effectively solve the problems of large measurement lag, high price, and complex maintenance of online analytical instruments in the production process. At present, neural network based on data-driven is one of the main tools of soft sensor. In the process of modeling data collection, the collection of dominant variables is much more difficult than that of auxiliary variables, resulting in a large amount of unlabeled data. However, traditional soft sensor modeling methods ignore these unlabeled data and only use a small amount of labeled data for modeling, which has negative effect on the prediction accuracy of the model. To solve the problem of label missing, the nearest neighbor algorithm is used to pseudo label the unlabeled data. At the same time, a network structure is designed by combining convolution operation and gated recurrent unit neural network (GRU) to further utilize the unlabeled data, extract the dynamic feature from data at different time, and improve the prediction accuracy of the neural network. Finally, the method is applied to the prediction of propane concentration on the top of propylene distillation column. The results show that the model can solve the problem of label missing in the nonlinear dynamic system and has higher prediction accuracy.  相似文献   

14.
对遗传算法 (GA)和模糊神经网络控制器的结构进行了说明。为了克服反向传播算法 (BP)的缺点 ,通过遗传算法对模糊神经网络控制器的参数进行优化 ,亦即对模糊神经网络进行训练。用通过优化后的模糊神经网络控制器控制一个带有纯滞后的非线性对象 ,仿真结果证实了其性能较常规模糊控制器优越。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号