首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
肖文海  王颖  元英进 《化工学报》2016,67(1):119-128
合成生物学即生物学的工程化,因其打破了非生命化学物质和生命物质之间的界线,推动了生命科学由理解生命到创造生命的革新,因此对科学发展和技术创新起到了颠覆性作用,引发了化学品绿色制造的巨大变革。合成生物学作为化学品绿色制造的核心技术,主要从原料到菌种再到过程进行全链条设计和优化。本文首先从原料多样化、产品的合成与底盘细胞的选择这三个方面,综述了化学品绿色制造过程中合成生物学所起到的关键核心作用。在此基础上系统阐述了人工体系的设计与构建,并对今后如何通过发展合成生物学来促进化学品绿色制造,从“原料、底盘细胞、反应过程”这三个方面提出了相应的展望。  相似文献   

2.
王琛  赵猛  丁明珠  王颖  姚明东  肖文海 《化工进展》2020,39(11):4557-4567
合成生物学作为一种新兴的工程化生物学,可以在底盘细胞中引入外源基因模块实现新功能。但是如何将多种外源模块(酶)进行有效地组装从而提高其协同催化功能是急需解决的一个重大问题。由于异源酶在新宿主中存在内源环境适应性问题,限制了酶的生物活性。生物支架系统作为一种有效手段,可以提供有效的多酶组装系统。恰当的生物支架能够提供适应环境的柔性平台,实现多酶体系的表达调控,稳定性组装,利于酶与底物结合的区域化设计。本综述对不同类型的生物支架的研究进展进行了系统的总结。文中根据不同类型支架(蛋白型、核酸型)的特点,介绍了典型的应用范例,论述了每种支架的优势与不足,并对生物支架的常见工作机制做了详细讨论。最后对生物支架在人工细胞器设计和复杂聚合物降解等方面的应用做出展望。  相似文献   

3.
合成生物学在生物基塑料制造中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
徐彦芹  杨锡智  罗若诗  黄玉红  霍锋  王丹 《化工学报》2020,71(10):4520-4531
合成生物学是以工程学思想为指导,对天然生物基因组进行改造和重构,合成新的生物元件,构建新的代谢途径,生产新产品或获得新表型的新兴学科。生物基塑料是以天然物质为原料在微生物作用或化学反应下生成的塑料。利用合成生物学改造工程菌株的方法制备合成生物基塑料已经成为学术界和产业界关注的热点。本文综述了合成生物学的发展和重要的合成生物学技术,重点综述了利用合成生物学技术构建聚羟基烷酸酯、尼龙、聚乳酸和丁二酸丁二醇酯等生物基塑料聚合物单体及其衍生物的代谢途径和工程优化领域的研究进展。  相似文献   

4.
刘卫兵  叶邦策 《化工进展》2021,40(3):1226-1237
聚酮化合物具有广泛的药用活性和极高的经济价值,但如何高效、经济、绿色、环保地合成聚酮化合物是目前急需解决的问题。随着合成生物学的发展及分子生物学技术的进步,不断有新的技术和策略被用于聚酮化合物的生物制造。本文介绍了聚酮化合物生物制造中的关键酶、前体物质及代谢途径等,分析了通过CRISPR技术及翻译后修饰代谢工程优化代谢调控网络;通过替换及优化启动子等手段改造与优化代谢途径;通过构建简单、高效的异源表达系统等策略提高聚酮化合物的生物制造效率等。在此基础上对红霉素、阿维菌素、多杀菌素的合成生物学研究的最新进展进行了总结,进而对当前聚酮化合物生物制造面临的产量及效率低下等问题和可能的解决途径,如平衡初级代谢与次级代谢,构建新型、优势底盘细胞及代谢网络的重新设计与改造等进行了展望。  相似文献   

5.
生物催化在手性化合物合成中的应用   总被引:1,自引:0,他引:1  
介绍了生物催化手性化合物合成中使用的催化剂种类,生物催化手性合成方法在手性药物、手性化妆品及其它手性化合物合成中的应用,展望了这一方法在手性化合物合成方面的前景。  相似文献   

6.
生物酶在有机介质中仍具有催化活性这一发现为酶的开发应用开辟了一新的途径,亦是酶工程研究的重大进步,利用这一新的生化技术可完成许多传统酶法难以完成的化学反应,并已用于化学合成,生物传感器等领域。  相似文献   

7.
生物催化技术在化学工业中的应用(一)   总被引:1,自引:0,他引:1  
化学工业在尝试使用可再生的原料以改善其持续性 ,促使化学品生产中生物加工的探索。生物系统吸引人的特征包括多样性、酶作用物选择性、区域选择性、化学选择性、对映体选择性以及在温和环境温度和压力下的催化作用。然而 ,生物加工的问题在于同化学加工的成本竞争 ,因为与现行的工业化生产过程对应的资产成本是很高的。化学工业可能会将生物技术运用于现有的原料和生产过程中 ,以从原料、加工副产物及废弃物中获取更多的好处。在今后的 10年间 ,能提供优于传统化学路线的生产过程或产品的生物加工将被更为广泛地应用。本文综述了环烷酮、烷基芳香烃、腈的生物转化 ,生物的芳香烃羧化作用和葡萄糖制 1,3 丙二醇  相似文献   

8.
近年来,合成生物学在多个领域崭露头角,在农残检测中也发挥着越来越重要的作用。基于合成生物学模块化和工程化指导思想,各种基因部件的多样化组合为农残检测提供更多方案。简便、耐用、低成本、原位检测等特点也使其较传统检测手段具有更强的竞争力。但与此同时,合成生物学在农残检测中的应用也受到复杂检测环境和生物安全性等问题的影响。结合目前合成生物学在有机氯、有机磷、拟除虫菊酯和氨基甲酸酯类农药检测中的应用与创新实例,归纳合成生物学在农残检测中应用的原理,分析并探讨合成生物学技术未来在农残检测中的发展潜力与应用前景。  相似文献   

9.
徐静  由紫暄  张君奇  陈正  吴德光  李锋  宋浩 《化工学报》2020,71(9):3950-3962
电活性生物膜是由电能细胞分泌的胞外多糖、蛋白、胞外DNA(extracellular DNA, eDNA)、菌毛等成分聚集,与细胞本身相互交联形成的导电多聚体。以多菌群落形态展现,在微生物燃料电池、微生物电合成、高值化学品生产、重金属污染处理、医疗等领域中具有至关重要的作用,是微生物电催化系统研究的核心之一。但自然状态下的电活性生物膜因厚度、结构稳定性、生物量等因素的限制,严重制约了电子传递效率。综述了近五年利用合成生物学改造电活性生物膜的研究进展,系统探讨了工程生物膜的构建、结构成分、导电性能以及应用,为将来进一步实现高效电催化奠定基础。  相似文献   

10.
万涛  辛星  闻建平 《现代化工》2012,32(5):24-27
与传统的加氢脱硫方法相比,采用4S专一途径微生物脱除油品中的硫具有成本和操作费用低、反应条件温和、效率高、无需加氢、低碳排放等优势。文章综述了常见生物脱硫菌、近年来生物脱硫微生物的代谢工程研究情况,并对4S专一途径脱硫菌的研究方向,即系统生物学和合成生物学,进行了展望。  相似文献   

11.
针对冷水机组产生的故障数据不足,数据集中正常数据和故障数据数量不平衡,进而导致故障诊断精度下降的问题,提出一种基于中心损失的条件生成式对抗网络(central loss conditional generative adversarial network,CLCGAN)和支持向量机(support vector machine,SVM)的故障诊断方法。首先,CLCGAN利用少量真实故障数据生成新的故障数据;然后,将生成的故障数据与初始数据集混合,使正常数据与故障数据的数量达到平衡;最后,利用平衡数据集构建SVM模型进行故障诊断。在GAN生成冷水机组故障数据时,构建动态中心损失项并加入到目标函数中,利用动态的中心损失减少冷水机组生成的各种故障数据的类内距离,从而降低各个故障生成数据之间的重叠程度,增加生成数据的可靠性。在生成故障数据之前配置相应的故障标签,并输入到CLCGAN中指导数据生成过程,使生成的故障数据可以均衡地分布于各个故障类别。在ASHRAE 1043-RP数据集上对所提方法进行了验证,结果表明,相较于其他解决数据不平衡问题的故障诊断方法,所提方法具有更高的故障诊断准确率。  相似文献   

12.
赵贞尧  张保财  李锋  宋浩 《化工学报》2021,72(1):468-482
以产电微生物为核心的微生物电催化系统在能源、环境等诸多领域有着广泛的应用,然而自然环境中野生型产电微生物可利用底物谱窄、底物摄取代谢强度弱,胞内电子池容量小、还原力再生效率差,胞外电子传递速率慢、电子通量小,这已成为限制其工业化应用的主要瓶颈。本文基于产电微生物介导的化学能到电能的能量转化路径,总结阐明了产电微生物的胞内电子生成过程与胞外电子传递机制,系统综述了近五年国内外利用合成生物学增强产电微生物底物摄取利用、强化胞内电子生成、加速胞外电子传递方面的研究进展,并对未来设计构建高效产电细胞研究进行了展望。  相似文献   

13.
刘夺  杜瑾  赵广荣  元英进 《化工学报》2011,62(9):2391-2397
合成生物学是以工程学思想为指导,对天然生物系统进行重新设计与改造,同时设计并合成新的生物元件、模块和系统的崭新学科。合成生物学是自然科学发展到现阶段的产物,并已经在医药、能源等领域取得了一些显著成果。本文综述了在工程细胞中利用合成生物学方法构建抗疟疾药物青蒿素的前体物青蒿二烯,抗癌药物紫杉醇的前体物紫杉二烯,以及脂肪酸酯、脂肪醇、高级醇的合成途径等研究进展。此外,一些重要的合成生物学相关技术,大大加速工程细胞的重构与进化,为构建应用于生产领域的新功能细胞提供方便实用的工具。  相似文献   

14.
The use of traditional chemical catalysis to produce chemicals has a series of drawbacks, such as high dependence on fossil resources, high energy consumption, and environmental pollution. With the development of synthetic biology and metabolic engineering, the use of renewable biomass raw materials for chemicals synthesis by constructing efficient microbial cell factories is a green way to replace traditional chemical catalysis and traditional microbial fermentation. This review mainly summarizes several types of bulk chemicals and high value-added chemicals using metabolic engineering and synthetic biology strategies to achieve efficient microbial production. In addition, this review also summarizes several strategies for effectively regulating microbial cell metabolism. These strategies can achieve the coupling balance of material and energy by regulating intracellular material metabolism or energy metabolism, and promote the efficient production of target chemicals by microorganisms.  相似文献   

15.
Microbial production of aromatic chemicals would greatly contribute to solving the problems with fossil resource supply and environmentally sustainable development. Engineering and extending the shikimate/aromatic amino acid biosynthetic pathways are important routes for microbial production of various aromatic chemicals. With advances in metabolic engineering and synthetic biology, we can broaden the product spectrum and obtain several valuable and novel aromatic chemicals from renewable feedstocks. Here, in this review, the latest research progress on microbial production of various aromatic chemicals, and recent metabolic engineering and synthetic biology strategies targeting the central carbon metabolism, the shikimate and aromatic amino acid biosynthetic pathways are summarized and discussed. This work aims to provide some valuable tips for the construction of cost‐effective engineered strains for producing various aromatic chemicals. © 2018 Society of Chemical Industry  相似文献   

16.
Aromatic compounds, which are traditionally derived from petroleum feedstocks, represent a diverse class of molecules with a wide range of industrial and commercial applications. Significant progress has been made to alternatively and sustainably produce many aromatics from renewable substrates using microbial biocatalysts. While the construction of both natural and non-natural pathways has expanded the number and diversity of aromatic bioproducts, pathway modularization in both single- and multi-strain systems continues to support the enhancement of key production metrics towards economically-viable levels. Emerging tools for implementing more precise metabolic control (e.g. CRISPRi, sRNA) as well as the engineering of novel high-throughput screening platforms utilizing in vivo aromatic biosensors, meanwhile, continue to facilitate further optimization of both pathways and hosts. While product toxicity persists as a key challenge limiting the production of many aromatics, various successful strategies have been demonstrated towards improving tolerance, including via membrane and efflux pump engineering as well as by exploiting alternative production hosts. Finally, as a further step towards sustainable and economical aromatic bioproduction, non-model substrates including lignin-derived compounds continue to emerge as viable feedstocks. This review highlights recent and notable achievements related to such efforts while offering future outlooks towards engineering microbial cell factories for aromatic production. © 2018 Society of Chemical Industry  相似文献   

17.
合成生物学研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
林章凛  张艳  王胥  刘鹏 《化工学报》2015,66(8):2863-2871
合成生物学是以工程化设计思路,构建标准化的元器件和模块,改造已存在的天然系统或者从头合成全新的人工生命体系,实现在化学品合成(包括材料、能源和天然化合物)、医学、农业、环境等领域的应用。人们利用基本的生物学元件设计和构建了基因开关、振荡器、放大器、逻辑门、计数器等合成器件,实现对生命系统的重新编程并执行特殊功能。模块化处理生物的代谢途径,并在底盘细胞上进行组装和优化,可以实现大宗化学品和精细化学品的合成。目前人们已经在丁醇、异丁醇、青蒿素和紫杉醇等化合物的生物合成上取得了重要进展。近年来还发展了多种基因组编辑和组装技术,可精确地对基因组进行编辑,人们还成功地合成了噬菌体基因组、支原体基因组和酵母基因组。在未来的50~100年内,合成生物学将对人类的医疗、化学品制造(含药品)、军事产生渐进性的、渗透性的但颠覆性的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号