首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
Metal-organic chemical vapour deposition (MOCVD) of various phases in PrOx system has been studied in relation with deposition temperature (450–750 °C) and oxygen partial pressure (0.027–100 Pa or 0.2–750 mTorr). Depositions were carried out by pulsed liquid injection MOCVD using Pr(thd)3 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) precursor dissolved in toluene or monoglyme. By varying deposition temperature and oxygen partial pressure amorphous films or various crystalline PrOx phases (Pr2O3, Pr7O12, Pr6O11) and their mixtures can be grown. The pure crystalline Pr2O3 phase grows only in a narrow range of partial oxygen pressure and temperature, while high oxygen pressure (40–100 Pa) always leads to the most stable Pr6O11 phase. The influence of annealing under vacuum at 750 °C on film phase composition was also studied. Near 90% step coverage conformity was achieved for PrOx films on structured silicon substrates with aspect ratio 1:10. In air degradation of Pr2O3 films with transformation to Pr(OH)3 was observed in contrast to Pr6O11 films.  相似文献   

2.
Ken K. Lai  H. Henry Lamb   《Thin solid films》2000,370(1-2):114-121
Tungsten (W) films were deposited on Si(100) from tungsten hexacarbonyl, [W(CO)6], by low-pressure chemical vapor deposition (CVD) in an ultra-high vacuum (UHV)-compatible reactor. The chemical purity, resistivity, crystallographic phase, and morphology of the deposited films depend markedly on the substrate temperature. Films deposited at 375°C contain approximately 80 at.% tungsten, 15 at.% carbon and 5 at.% oxygen. These films are polycrystalline β-W with a strong (211) orientation and resistivities of >1000 μΩ cm. Vacuum annealing at 900°C converts the metastable β-W to polycrystalline -W, with a resistivity of approximately 19 μΩ cm. The resultant -W films are porous, with small randomly oriented grains and nanoscale (<100 nm) voids. Films deposited at 540°C are high-purity (>95 at.%) polycrystalline -W, with low resistivities (18–23 μΩ cm) and a tendency towards a (100) orientation. Vacuum annealing at 900°C reduces the resistivity to approximately 10 μΩ cm, and results in a columnar morphology with a very strong (100) orientation.  相似文献   

3.
In2O3 thin films have been prepared from commercially available pure In2O3 powders by high vacuum thermal evaporation (HVTE) and from indium iso-propoxide solutions by sol-gel techniques (SG). The films have been deposited on sapphire substrates provided with platinum interdigital sputtered electrodes. The as-deposited HVTE and SG films have been annealed at 500°C for 24 and 1 h, respectively. The film morphology, crystalline phase and chemical composition have been characterised by SEM, glancing angle XRD and XPS techniques. After annealing at 500°C the films’ microstructure turns from amorphous to crystalline with the development of highly crystalline cubic In2O3−x (JCPDS card 6-0416). XPS characterisation has revealed the formation of stoichiometric In2O3 (HVTE) and nearly stoichiometric In2O3−x (SG) after annealing. SEM characterisation has highlighted substantial morphological differences between the SG (highly porous microstructure) and HVTE (denser) films. All the films show the highest sensitivity to NO2 gas (0.7–7 ppm concentration range), at 250°C working temperature. At this temperature and 0.7 ppm NO2 the calculated sensitivities (S=Rg/Ra) yield S=10 and S=7 for SG and HVTE, respectively. No cross sensitivity have been found by exposing the In2O3 films to CO and CH4. Negligible H2O cross has resulted in the 40–80% relative humidity range, as well as to 1 ppm Cl2 and 10 ppm NO. Only 1000 ppm C2H5OH has resulted to have a significant cross to the NO2 response.  相似文献   

4.
High-quality and well-reproducible PbSnS3 thin films have been prepared by a simple and inexpensive chemical-bath deposition method from an aqueous medium, using thioacetamide as a sulphide ion source. X-ray diffraction analysis of the deposited films revealed that the as-deposited films were amorphous, however, an amorphous-to-crystalline phase transition was observed as the result of thermal annealing at 425 K for 1 h. The X-ray structure analysis of the collected powder from the bath annealed at 425 K for 1.5 h revealed an orthorhombic phase.

Analysis of the optical absorption data of crystalline PbSnS3 films revealed that both direct and indirect optical transitions exist in the photon energy range 1.24–2.48 eV with optical band gaps of 1.68 and 1.42 eV, respectively. However, a forbidden direct optical transition with a band gap value of 1.038 eV dominates at low energy (<1.24 eV). The refractive index changes from 3.38 to 2.16 in the range 500–1300 nm. The high frequency dielectric constant and the carrier concentration to the effective mass ratio calculated from the refractive index analysis were found to be 4.79 and 2.3×1020 cm−3, respectively. The temperature dependence of the electrical resistivity of the deposited films follows the semiconductor behaviour with extrinsic and intrinsic conduction. The determined activation energies range are 0.35–0.42 and 0.76–85 eV, respectively.  相似文献   


5.
Ultrathin films (5 nm, 10 nm and 20 nm effective thickness) of WO3 have been deposited in high vacuum (10− 6 Torr) onto single crystal Si(100) substrates and studied with X-ray diffraction, atomic force microscopy, scanning tunneling microscopy and spectroscopy. The experiments have been carried out on “as-deposited” thin films or after 1 h post-deposition annealing at various temperatures (ranging from 300 °C to 500 °C). A size induced increase of the amorphous to crystalline (monoclinic) phase transition has been observed for the 5 nm and 10 nm films, with a critical crystallite size of 25 ± 5 nm and a critical temperature of 345 ± 5 °C. All the experimental evidences show that, upon annealing, there is a diffusion limited aggregation growth of WO3 that forms large flat two-dimensional islands composed by aggregates of individual crystallites approximately uniform in size and shape. These islands are isolated in the 5 nm thin films, are connected in the 10 nm case and form a uniform patchwork in the 20 nm thin films. Scanning tunneling spectroscopy shows the opening of a large surface band gap (2.7 eV) in the 500 °C annealed films and the significant presence of in gap states for thin films prepared with a lower (below 400 °C) annealing temperature. These findings are discussed in view of the optimization of the best morphological, structural and electronic parameters to fabricate WO3 gas sensing devices at the sub-micrometer length scale.  相似文献   

6.
The formation, structure and morphology of silver telluride was investigated in the reaction of (0 0 1), (0 1 1) and (1 1 1) single crystalline Ag films with vacuum deposited Te. Silver films 30–40 nm in thickness were deposited by thermal evaporation onto water- and chlorine-treated NaCl. Onto this silver 1–40 nm of tellurium were deposited at 100 and 200 °C. The Ag–Te reaction occurred during Te deposition. Accordingly, formation of the compound phase was investigated from the nucleation stage through complete tellurization on either side of the polymorphic phase transformation temperature (Tc=150 °C). Transmission electron microscope and selected area electron diffraction showed that monoclinic silver telluride (Ag2Te) of different morphology and texture was always formed. The orientation of silver and monoclinic phase upon differently oriented monocrystalline Ag films and at deposition temperatures around Tc is discussed.  相似文献   

7.
HfO2 thin films with columnar microstructure were deposited directly on ZnS substrates by electron beam evaporation process. SiO2 thin films, deposited by reactive magnetron sputtering, were used as buffer layers, HfO2 thin films of granular microstructure were obtained on SiO2 interlayer by this process. X-ray diffraction patterns demonstrate that the as-deposited HfO2 films are in an amorphous-like state with small amount of crystalline phase while the HfO2 films annealed at 450 °C in O2 for 30 min and in Ar for 150 min underwent a phase transformation from amorphous-like to monoclinic phase. Antireflection effect in certain infrared wave band, such as 3–6 μm, 4–12 μm, 4–8 μm and 3–10 μm, can be observed, which was dependent on the thickness of thin films. The cross-sectional images of HfO2 films, obtained by field emission scanning electron microscopy, revealed that there was no distinct morphological change upon annealing.  相似文献   

8.
Second harmonic generation in novel pyroelectric liquid crystal polymers (PLCP) made from a series binary mixtures, was studied using 1100 nm as the fundamental wavelength. The PLCPs were prepared by photo-polymerization of binary mixtures of two monomers which exhibit a smectic C* phase, A2c (4″-(R)-(−)-2-[(10-acrylo-yloxy)decyl]oxy-3-nitrophenyl 4-{4′-[(11-acryloyloxy)-undecyloxy]phenyl}benzoate) and Alb (4″-((R)-(+)-2-octyloxy)-3″-nitrophenyl 4-(4′-(11-acryloyloxy)undecyloxy)-phenyl)-benzoate). The highest d16 and d23 coefficients were found to be in the range 0.65–0.8 pm/V, and differed depending on the detailed preparation of the sample. All cases of polymers formed from the chiral smectic C* phase showed an SHG-signal with no external field present, indicating that polar order became fixed. The SHG-signal was found to increase with the tilt angle of the FLC molecules.  相似文献   

9.
Semiconducting polycrystalline CdSe thin films were prepared on glass substrates by chemical bath at 65 °C. As-deposited films grew in the metastable cubic sphalerite (S) crystalline structure with good stoichiometry. Upon thermal annealing (TA) in Ar+Se2 atmosphere at different temperatures in the range 200–500 °C, the gradual phase transformation from cubic modification to hexagonal wurtzite (W) stable phase could be observed. From optical absorption measurements the fundamental energy band gap (Eg) and the second electronic transition (EgEg) were calculated for as-deposited and thermal annealed films. For TA350 °C, S-phase dominates the crystalline structure and only the spin orbit (ΔEso) contribution to ΔEg is present. Above 350 °C, the W-phase dominates and the energy splitting (ΔEcf), owed to crystal field contribution and originated by the loss of lattice symmetry, should be added to ΔEso in order to complete ΔEg in the W-phase. The values ΔEso=0.389±0.011 eV and ΔEcf=0.048±0.018 eV were found from our analysis, and Tc=350 °C was here defined as the critical point of the phase transformation.  相似文献   

10.
The dependence of the work function φ of thin Pd films (80–120 Å) on the temperature of subsequent annealing has been studied. In agreement with previous papers φ increased up to a temperature Tt=400 K. Above this temperature an anomalous decrease of φ was observed. From electrical resistance measurements and electron micrographs, it was observed that agglomeration of the film occured above 400 K.

The anomalous behaviour of φ is explained as an enrichment of the lower coordinated crystal faces on the surface.  相似文献   


11.
We report on the properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 solid solution thin films for ferroelectric non-volatile memory applications. The solid solution thin films fabricated by modified metalorganic solution deposition technique showed much improved properties compared to SrBi2Ta2O9. A pyrochlore free crystalline phase was obtained at a low annealing temperature of 600°C and grain size was found to be considerably increased for the solid solution compositions. The film properties were found to be strongly dependent on the composition and annealing temperatures. The measured dielectric constant of the solid solution thin films was in the range 180–225 for films with 10–50% of Bi3TaTiO9 content in the solid solution. Ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films were significantly improved compared to SrBi2Ta2O9. For example, the observed remanent polarization (2Pr) and coercive field (Ec) values for films with 0.7SrBi2Ta2O9–0.3Bi3TaTiO9 composition, annealed at 650°C, were 12.4 μC/cm2 and 80 kV/cm, respectively. The solid solution thin films showed less than 5% decay of the polarization charge after 1010 switching cycles and good memory retention characteristics after about 106 s of memory retention. The improved microstructural and ferroelectric properties of (1−x)SrBi2Ta2O9xBi3TaTiO9 thin films compared to SrBi2Ta2O9, especially at lower annealing temperatures, suggest their suitability for high density FRAM applications.  相似文献   

12.
Morphology of Al–2.0at%Ta and Al–2.0 at.% Nd alloy films before and after annealing was investigated for applications of interconnections for liquid crystal displays. It was found that the morphology and the microstructure of Al–2.0 at.% Nd alloy films changed markedly by annealing at the temperature region from 200°C to 300°C, while the morphology of Al–2.0 at.% Ta alloy films did not change by annealing up to 400°C. For the case of Al–2.0 at.% Nd alloy films, the incline of the <111> fiber texture to the substrate normal was observed during annealing. Structural characteristics of the Al films were investigated by TEM, SAD and XRD to determine the influence of alloying elements on the morphology and the fiber texture. From these results, it was concluded that the microstructures strongly influence the morphology and the grain orientation of Al alloy films.  相似文献   

13.
Experimental data on the phase formation process of amorphous IrxSi1−x thin films with 0.30 ≤ x ≤ 0.41 are presented and discussed in relation to electric transport properties. The structure formation process at temperatures from 300 K up to 1223 K was investigated by means of X-ray diffraction. Distinct phases were observed in the final stage in dependence on the initial composition: Ir3Si4, Ir3Si5, and IrSi3. An unknown metastable phase was found in films with a silicon concentration of 61 at.% to 64 at.% after annealing above the crystallization temperature T = 970 K. The crystal structure of this phase was determined by the combined use of X-ray diffraction and electron diffraction. It was found to be monoclinic, basic-face centred with lattice constants a = 1.027 nm, b = 0.796 nm, c = 0.609 nm, and γ = 113.7°. Additionally, microstructure and morphology of the films were investigated by transmission electron microscopy (TEM). The annealing process was studied by means of mechanical stress investigations as well as by electrical resistivity and thermopower measurements. Correlations between the structure, the phase formation and the electrical transport behaviour are discussed on the basis of conduction mechanism.  相似文献   

14.
Thin ( 1 μm) crystalline ZnO films with a good optical quality and good (0002) texture are grown under two considerably different process parameter sets using a r.f. planar magnetron sputtering unit. The optical parameters of the two corresponding ZnO layers are distinctly different: high refractive index ( 2.0 at λ = 632.8 nm) ZnO films resembling the single crystal form, and ZnO films with considerably lower (typical difference 0.05) refractive indices. The refractive index of the latter ZnO layers is adjustable ( 1.93–1.96 at λ = 632.8 nm) through the process deposition parameters. It is shown that the difference in refractive index between the two ZnO types most probably results from a difference in package density of the crystal columns. The optical waveguide losses of both ZnO types are typically 1–3 dB/cm at λ = 632.8 nm, however the low refractive index ZnO layers need a post-deposition anneal step to obtain these values. The two ZnO types are used to fabricate optical channel-and slab waveguides with small refractive index differences.  相似文献   

15.
Amita Verma  Anshu Goyal  R.K. Sharma   《Thin solid films》2008,516(15):4925-4933
The properties of sol–gel derived CeTi2O6 thin films deposited using a solution of cerium chloride heptahydrate and titanium propoxide in ethanol are discussed. The effect of annealing temperature on structural, optical, photoluminescence, photocatalysis and electrochemical characteristics has been examined. Lowest annealing temperature for the formation of crystalline CeTi2O6 phase in these samples is identified as 580 °C. The optical transmittance of the films is observed to be independent of the annealing temperature. The optical energy bandgap of the 600 °C annealed film for indirect transition is influenced by the presence of anatase phase of TiO2 in its structure. Fourier transform infrared spectroscopy investigations have evidenced increased bond strength of the Ti–O–Ti network in the films as a function of annealing temperature. The photoluminescence intensity of the films has shown dependence on the annealing temperature with the films fired at 450 °C exhibiting the maximum photoluminescence activity. The decomposition of methyl orange and eosin (yellow) under UV–visible light irradiation in the presence of crystalline CeTi2O6 films shows the presence of photoactivity in these films. The photocatalytic response of CeTi2O6 films is found to be superior to the TiO2 films. In comparison to crystalline films, the amorphous films have shown superior electrochemical characteristics. The 500 °C annealed amorphous films have exhibited the most appropriate properties for incorporation in electrochromic devices comprising tungsten oxide as the primary electrochromic electrode.  相似文献   

16.
Thin films of Al and Mn multilayers were synthesized using thermal evaporation under high vacuum conditions. The whole film thickness containing three bilayers of Al and Mn is about 120 nm. The global concentration of the samples was varied between 10 and 46.5 at.% Mn, by changing the thickness of the bilayer. The as-evaporated samples were heat treated at different temperatures (473, 623, 823 and 873 K) for 2 and 8 h to investigate the interfacial diffusion induced phase transformations in the multilayered thin films. Transmission electron microscopy (TEM) has been mainly used to characterize the crystalline structure of a variety of phases revealed on annealing, such as μ, λ and φ phases up to 823 K, δ phase at 823 K and T6 phase at 873 K. The occurrence of a variety of structures on annealing has been attributed to the interfacial reactions at the Al–Mn bilayers, and, therefore, the global composition of the composite films is not significant during the process of phase transformations. The crystallographic relationships of Al–Mn approximant structures of the decagonal quasicrystal are discussed to understand the evolution and stability of the T6 phase at high temperature.  相似文献   

17.
We report here on the deposition process by laser ablation and on the characterization of molybdenum films epitaxially grown on (100)MgO single-crystal substrates. The 50 nm (100)Mo films are epitaxied. These films have a low resistivity (5.3 μΩ cm at 273 K) close to the pure molybdenum resistivity value (4.85 μΩ cm at 273 K). The low resistivity corroborates the quality of the Mo films in spite of a very low deposition rate (25 nm h−1). An other orientation has been also encountered. The complementary characterization methods (X-ray diffraction in θ-2θ or oscillating crystal mode, reflection high-energy electron diffraction and electron channelling patterns) have shown it to be the (110)Mo orientation.  相似文献   

18.
Ti–Al–N coatings were deposited by direct current reactive magnetron sputtering using two titanium and two aluminum targets. Two series of films with Al/(Al + Ti) atomic ratios of ≈ 23.5 and ≈ 34.5% were studied. The amount of nitrogen in the films was varied from 0 to 44at.%. The incorporation of N atoms led to a change of the -Ti lattice preferential orientation from <100> to <001>, a decrease in the degree of crystallinity, and subsequently to the collapse of the crystalline structure. Annealing at 975K promotes the formation of the Ti3Al compound. The hardness increases smoothly with the nitrogen content. The high hardness values (31 and 41GPa) measured for the films with the highest N contents may be explained by the deposition of a nanocomposite phase. For the Ti–Al–N film deposited with Al/(Al + Ti) atomic ratio of 34.5% the -Ti structure was completely transformed to TiO2 upon oxidation. The high oxidation resistance of the film deposited with 44at.% N at 1075K is characteristic of Ti–Al–N films.  相似文献   

19.
P.C. Joshi  S.B. Desu 《Thin solid films》1997,300(1-2):289-294
Polycrystalline BaTiO3 thin films having the perovskite structure were successfully produced on platinum coated silicon, bare silicon, and fused quartz substrate by the combination of the metallo-organic solution deposition technique and post-deposition rapid thermal annealing treatment. The films exhibited good structural, electrical, and optical properties. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) and metal-ferroelectric-semiconductor (MFS) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 255 and 0.025, respectively, and the remanent polarization and coercive field were 2.2 μC cm−2 and 25 kV cm−1, respectively. The resistivity was found to be in the range 1010–1012 Ω·cm, up to an applied electric field of 100 kV cm−1, for films annealed in the temperature range 550–700 °C. The films deposited on bare silicon substrates exhibited good film/substrate interface characteristics. The films deposited on fused quartz were highly transparent. An optical band gap of 3.5 eV and a refractive index of 2.05 (measured at 550 nm) was obtained for polycrystalline BaTiO3 thin film on fused quartz substrate. The optical dispersion behavior of BaTiO3 thin films was found to fit the Sellmeir dispersion formula well.  相似文献   

20.
This article reports the optical and morphological properties of dip-coated TiO2 and ZrO2 thin films on soda-lime glass substrates by metal-organic decomposition (MOD) of titaniumIV and zirconiumIV acetylacetonates respectively. Thermogravimetric and differential thermal analysis (DTA–TG) were performed on the precursor powders, indicating pure TiO2 anatase and tetragonal ZrO2 phase formation. Phase crystallization processes took place in the range of 300–500 °C for anatase and of 410–500 °C for ZrO2. Fourier Transform Infrared Spectroscopy (FT-IR) was used to confirm precursor bidentate ligand formation with keno-enolic equilibrium character. Deposited films were heated at different temperatures, and their structural, optical and morphological properties were studied by grazing-incidence X-ray Diffraction (GIXRD) and X-Ray Photoelectron Spectroscopy (XPS), Ultraviolet Visible Spectroscopy (UV-Vis), and Atomic Force Microscopy (AFM) respectively. Film thinning and crystalline phase formation were enhanced with increasing temperature upon chelate decomposition. The optimum annealing temperature for both pure anatase TiO2 and tetragonal ZrO2 thin films was found to be 500 °C since solid volume fraction increased with temperature and film refractive index values approached those of pure anatase and tetragonal zirconia. Conditions for clean stoichiometric film formation with an average roughness value of 2 nm are discussed in terms of material binding energies indicated by XPS analyses, refractive index and solid volume fraction obtained indirectly by UV-Vis spectra, and crystalline peak identification provided by GIXRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号