首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perturbants of the endoplasmic reticulum (ER), including Ca(2+)-mobilizing agents, provoke a rapid suppression of translational initiation in conjunction with an increased phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF)-2. Depletion of ER Ca2+ stores was found to signal the activation of a specific eIF-2 alpha kinase. Analysis of extracts derived from cultured cells that had been pretreated with Ca2+ ionophore A23187 or thapsigargin revealed a 2-3-fold increase in eIF-2 alpha kinase activity without detectable changes in eIF-2 alpha phosphatase activity. A peptide of 65-68 kDa, which was phosphorylated concurrently with eIF-2 alpha in extracts of pretreated cells, was identified as the interferon-inducible, double-stranded RNA (dsRNA)-regulated protein kinase (PKR). Depletion of ER Ca2+ stores did not alter the PKR contents of extracts. When incubated with reovirus dsRNA, extracts derived from cells with depleted ER Ca2+ stores displayed greater degrees of phosphorylation of PKR and of eIF-2 alpha than did control extracts. The enhanced dsRNA-dependent phosphorylation of PKR was observed regardless of prior induction of the kinase with interferon. Lower concentrations of dsRNA were required for maximal phosphorylation of PKR in extracts of treated as compared to control preparations. These findings suggest that PKR mediates the translational suppression occurring in response to perturbation of ER Ca2+ homeostasis.  相似文献   

2.
The participation of sarcoplasmic reticulum Ca2+ release channels in the activation of Ca(2+)-sensitive K+ currents (IK(Ca)) by cyclic dibutyryl GMP was investigated in smooth muscle cells from the circular layer of guinea-pig gastric fundus. All experiments were performed in the presence of 3 microM nicardipine into the bath and low Ca2+ buffering capacity of the pipette-filling solution (pCa 7.4). Ruthenium red (10 microM) as well as its combination with 10 microM heparin abolished the cyclic GMP-induced activation of IK(Ca), while 10 microM heparin remained ineffective. Ryanodine (10 microM) and the subsequently added 1 microM thapsigargin induced a relatively small increase in IK(Ca) amplitudes. The addition of 10 microM ryanodine to 1 microM thapsigargin-containing bath solution caused a vast increase in IK(Ca). It is hypothesyzed that protein kinase G-induced vectorial Ca2+ flux from the cell bulk and sarcoplasmic reticulum Ca2+ stores toward the plasma membrane is realized by a spontaneous Ca(2+)-induced Ca2+ release from a superficially situated Ca2+ store.  相似文献   

3.
We have used BCECF- or Fura-2-loaded rat pancreatic acinar cells to investigate the relationship between Ca2+ mobilization and intracellular pH (pHi). Ca2+-mobilizing agonists CCK-8 and ACh induced a transient acidification totally dependent on release of Ca2+ from internal stores. Employment of different physiological tools including ionomycin and thapsigargin to increase the cytosolic Ca2+ concentration and capacitative calcium influx also induced cellular acidification. Application of 1mM LaCl3 reduced the CCK-8-evoked acidification. These data indicate that the mobilization of intracellular Ca2+ stores by CCK-8 decreases cellular pH by Ca2+/H+ exchanger.  相似文献   

4.
Thapsigargin, previously reported to release Ca2+ from non-mitochondrial stores of different cell types, as well as nigericin, were found, when used at high concentrations, to release Ca2+ and collapse the membrane potential of Trypanosoma brucei bloodstream and procyclic trypomastigotes mitochondria in situ. At similarly high concentrations (> 10 microM), thapsigargin was also found to release Ca2+ and collapse the membrane potential of isolated rat liver mitochondria. These results indicate that care should be taken when attributing the effects of thapsigargin in intact cells to the specific inhibition of the sarcoplasmic and endoplasmic reticulum Ca(2+)-ATPase family of calcium pumps. In addition, we have found no evidence for an increase in intracellular Ca2+ by release of the ion from intracellular stores by nigericin, measuring changes in cytosolic Ca2+ by dual wavelength spectrofluorometry in fura-2-loaded T. brucei bloodstream trypomastigotes or measuring Ca2+ transport in digitonin-permeabilized cells.  相似文献   

5.
Gonadotropes synthesize and secrete LH and FSH under the control of GnRH, which acts via phosphoinositidase C (PIC)-linked G protein coupled receptors. Additionally, gonadotropin released from the pituitary is influenced by oxytocin, a peptide that has been shown to play a role in generation of the preovulatory LH surge. Although oxytocin receptors are present in the pituitary, studies have identified their presence on lactotropes but not on gonadotropes, raising the question of which cells act as the direct target of oxytocin in gonadotrope regulation. In this study, we examined effects of oxytocin on alphaT3-1 cells, a gonadotrope-derived cell line. Oxytocin, vasopressin, and vasotocin each stimulated accumulation of [3H]inositol phosphates in cells prelabeled with [3H]inositol, indicating activation of PIC. The rank order of potency (oxytocin > vasotocin > vasopressin) and sensitivity to inhibition by oxytocin and vasopressin receptor antagonists, revealed the effect to be mediated by oxytocin-selective receptors. Like other PIC activators, these nonapeptides caused biphasic (spike-plateau) increases in the cytosolic Ca2+. The spike response to oxytocin and GnRH were both retained in Ca2+-free medium, reflecting mobilization of intracellular Ca2+, and were comparably reduced by thapsigargin, implying mobilization of Ca2+ from a shared thapsigargin-sensitive intracellular pool. Brief stimulation with oxytocin, vasopressin, or vasotocin prevented subsequent Ca2+ responses to oxytocin, but not to GnRH, suggesting that the oxytocin receptor undergoes rapid homologous desensitization and reinforcing the interpretation that the nonapeptides act via the same receptor type. Oxytocin did not increase Ca2+ in cells stimulated with GnRH, whereas GnRH caused a spike Ca2+ increase even in the presence of oxytocin, implying that different mechanisms of desensitization (Ca2+ pool depletion and receptor uncoupling) are operating for two distinct PIC-coupled receptors in these cells. The demonstration that oxytocin acts directly via PIC-linked, oxytocin-selective receptors to increase cytosolic Ca2+ in a gonadotrope-derived cell line is consistent with the possibility that oxytocin has a comparable effect on nonimmortalized gonadotropes.  相似文献   

6.
The skeletal muscle relaxant dantrolene inhibits the release of Ca2+ from the sarcoplasmic reticulum during excitation-contraction coupling and suppresses the uncontrolled Ca2+ release that underlies the skeletal muscle pharmacogenetic disorder malignant hyperthermia; however, the molecular mechanism by which dantrolene selectively affects skeletal muscle Ca2+ regulation remains to be defined. Here we provide evidence of a high-affinity, monophasic inhibition by dantrolene of ryanodine receptor Ca2+ channel function in isolated sarcoplasmic reticulum vesicles prepared from malignant hyperthermia-susceptible and normal pig skeletal muscle. In media simulating resting myoplasm, dantrolene increased the half-time for 45Ca2+ release from both malignant hyperthermia and normal vesicles approximately 3.5-fold and inhibited sarcoplasmic reticulum vesicle [3H]ryanodine binding (Ki approximately 150 nM for both malignant hyperthermia and normal). Inhibition of vesicle [3H]ryanodine binding by dantrolene was associated with a decrease in the extent of activation by both calmodulin and Ca2+. Dantrolene also inhibited [3H]ryanodine binding to purified skeletal muscle ryanodine receptor protein reconstituted into liposomes. In contrast, cardiac sarcoplasmic reticulum vesicle 45Ca2+ release and [3H]ryanodine binding were unaffected by dantrolene. Together, these results demonstrate selective effects of dantrolene on skeletal muscle ryanodine receptors that are consistent with the actions of dantrolene in vivo and suggest a mechanism of action in which dantrolene may act directly at the skeletal muscle ryanodine receptor complex to limit its activation by calmodulin and Ca2+. The potential implications of these results for understanding how dantrolene and malignant hyperthermia mutations may affect the voltage-dependent activation of Ca2+ release in intact skeletal muscle are discussed.  相似文献   

7.
8.
A high-speed imaging technique was used to investigate the effects of inhibitors and activators of protein kinase C (PKC) on the [Ca2+]i transients and contraction of fura-2 loaded rat ventricular cardiac myocytes. The amplitude of the [Ca2+]i transient was reduced following treatment with 100 nM phorbol 12,13-dibutyrate (PDBu), whereas the PKC inhibitors staurosporine (0.5 microM) and calphostin C (10 microM) increased [Ca2+]i transient amplitude, elevated basal [Ca2+]i and slowed the decay of the [Ca2+]i transient. These changes were paralleled by similar alterations in the rate and extent of cell shortening. The activity of nitrendipine-sensitive Ca2+ channels was monitored indirectly as the rate of Mn2+ quench of cytosolic fura-2 in electrically-paced cells. PDBu reduced Mn2+ influx by six-fold, whereas staurosporine and calphostin C increased the influx rate by eight-fold and seven-fold over basal quench, respectively. The caffeine releasable Ca2+ pool was reduced in the presence of PDBu and increased transiently in presence of staurosporine. The effects of PKC activation and inhibition on sarcoplasmic reticulum Ca2+ content may be secondary to alterations of sarcolemmal Ca2+ influx. However, the PKC inhibitors also decreased the rate of sarcoplasmic reticulum Ca2+ uptake in permeabilized myocytes, suggesting that a direct effect of PKC on the sarcoplasmic reticulum may contribute to the prolongation of the [Ca2+]i transient under these conditions. The present work demonstrates that basal PKC activity has a potent depressant effect, mediated primarily through inhibition of sarcolemmal Ca2+ influx, which may play a key role in setting the basal tone of cardiac muscle.  相似文献   

9.
A limited amount of information is available about the lumenal Ca2+ kinetics of the sarcoplasmic reticulum (SR). Incubation of mag-fura-2AM permitted to incorporate a sufficient amount of the probe into the SR vesicles, as determined by Mn2+ quenching. Rapid changes in the lumenal [Ca2+] ([Ca2+]lum) during Ca2+ uptake and release could be monitored by following the signal derived from the lumenal probe while clamping the extra-vesicular Ca2+ ([Ca2+]ex) at various desired levels with a BAPTA/Ca buffer. Changes in the [Ca2+]lum during uptake and release show the characteristics intrinsic to the SR Ca2+ pump (the [Ca2+]ex-dependence of the activation and inhibition by thapsigargin) and the Ca2+ release channel (blocking by ruthenium red), respectively. A new feature revealed by the [Ca2+]lum measurement is that during the uptake reaction the free [Ca2+]lum showed a significant oscillation. Several pieces of evidence suggest that this is due to some interactions between the Ca2+ pump and lumenal proteins.  相似文献   

10.
The effects of local anaesthetics, bupivacaine and lidocaine, on Ca2+ flux behaviour of sarcoplasmic reticulum and on sarcolemmal functions were studied in the rabbit masseter muscle. The experiments were performed on sarcoplasmic reticulum and sarcolemmal vesicles prepared at 1 to 10 days after injection of local anaesthetics or saline into masseter muscle as well as on sarcoplasmic reticulum vesicles prepared from non-treated rabbits (for assessment of the effect on in vitro incubation with local anaesthetics). Bupivacaine potently reduced the efficiency of active sarcoplasmic reticulum Ca2+ transport as evaluated by coupling ratio (Ca2+ transported/ATP hydrolyzed, in the presence of oxalate) at 3 days after the injection; there was only a slight degree of uncoupling of Ca2+ transport from ATP hydrolysis with lidocaine injection. Bupivacaine but not lidocaine, at 3 days after injection, decreased both the apparent permeability of sarcoplasmic reticulum vesicles to Ca2+, determined by measuring net efflux of Ca2+ after stopping pump-mediated fluxes, and the steady-state Ca2+ load in sarcoplasmic reticulum, but had no effect on overall turnover of the Ca2+ATPase. The effects of bupivacaine on apparent sarcoplasmic reticulum Ca2+ permeability and steady-state Ca2+ load were inhibited by a Ca2+ antagonist verapamil. The reduction of Ca2+ uptake of sarcoplasmic reticulum and the protective effect of verapamil were reproduced in unfractionated homogenates prepared at 3 days after bupivacaine injection. In vitro exposure of sarcoplasmic reticulum vesicles to bupivacaine (0.5 to 50 mM) reduced steady-state Ca2+ load in a dose-dependent manner. The observed effect elicited by bupivacaine (25 mM) was partially protected by procaine, an inhibitor of Ca2(+)-induced Ca2+ release from sarcoplasmic reticulum, or by specific closure of the sarcoplasmic reticulum Ca2+ release channel by ryanodine, suggesting the possibility that in vitro exposure of sarcoplasmic reticulum vesicles to bupivacaine may produce an increase in apparent permeability of sarcoplasmic reticulum to Ca2+. In sarcolemma, bupivacaine reduced Na+,K(+)-ATPase and Na(+)-Ca2+ exchange activities at 3 days after injection; the effects on sarcolemmal vesicles were prevented by verapamil. These results suggest that although the effects elicited by bupivacaine injection and the in vitro exposure to bupivacaine on steady-state Ca2+ load of sarcoplasmic reticulum vesicles were similar, the membrane properties of the vesicles from bupivacaine-treated masseter muscles and those from normal untreated muscles may not be the same, which indicates that pure bupivacaine effect is due partly by an effect on ryanodine- and procaine-sensitive Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Autophagic sequestration of endogenous lactate dehydrogenase or electroinjected [3H]raffinose in isolated rat hepatocytes was strongly suppressed by the Ca2+ chelator EGTA, unless the cells had previously been electroloaded in the presence of high concentrations of Ca2+ (1.2 mM). The extracellular Ca2+ chelator bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) and the intracellular Ca2+ chelator BAPTA/tetra(acetoxymethyl)-ester (BAPTA/AM) both inhibited autophagy to the same extent as did EGTA. Inhibitors of Ca(2+)-activated protein kinases (KN-62, H-7, W-7) had little or no effect on autophagy, indicating that the Ca2+ requirement of autophagy was not mediated by such kinases. Agents that elevate cytosolic Ca2+ by releasing Ca2+ from intracellular stores, like thapsigargin, 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and the ionophores A23187 and ionomycin, inhibited autophagy strongly, implicating depletion of sequestered rather than of cytosolic intracellular Ca2+ as a common mechanism of inhibition. Lysosomal (propylamine-sensitive) protein degradation, known to be largely autophagy-dependent, was inhibited by thapsigargin and tBuBHQ. Thapsigargin had no effect on cellular ATP levels, but all agents tested (thapsigargin, tBuBHQ, ionophores) inhibited protein synthesis. Our results suggest that autophagy, like protein synthesis, is dependent on the presence of Ca2+ in some intracellular storage compartment.  相似文献   

12.
To evaluate the influence of the sarcoplasmic Ca(2+)-ATPase, isometric vasoconstrictions of aortic strips from spontaneously hypertensive rats from the Münster strain (SHR) and normotensive Wistar-Kyoto rats (WKY) were measured after inhibition of Ca(2+)-ATPase by thapsigargin. Inhibition of Ca(2+)-ATPase by thapsigargin caused a biphasic contractile response of the aorta in both SHR and WKY (maximum increase of tension: 1.7 +/- 0.3 x 10(-3) Newton and 2.1 +/- 0.3 x 10(-3) Newton, respectively; mean +/- SE). The second peak of the contractile response was abolished in the absence of external calcium or by inhibition of transplasmamembrane calcium influx by nifedipine, indicating that the second peak occurs as a consequence of calcium influx from the extracellular space. The initial peak of the contractile response after thapsigargin administration was abolished in the presence of an intracellular calcium antagonist, 8-(diethylamino-)-octyl-3,4,5-trimethoxybenzoate (TMB-8), indicating that the initial response was due to calcium release from intracellular stores. Measurements using the fluorescent dye fura2 showed that thapsigargin increased the cytosolic free calcium concentration ([Ca2+]i) in SHR by 72.6 +/- 7.3 nmol/l (n = 34) and in WKY by 53.3 +/- 6.6 nmol/l (n = 39), showing no significant differences between the two strains. The inhibition of Ca(2+)-ATPase increases [Ca2+]i and causes vasoconstriction. The vasoconstriction produced by thapsigargin is not significantly different between SHR and WKY.  相似文献   

13.
To identify and characterize individual Ca2+ pumps, we have expressed an Arabidopsis ECA1 gene encoding an endoplasmic reticulum-type Ca2+-ATPase homolog in the yeast (Saccharomyces cerevisiae) mutant K616. The mutant (pmc1pmr1cnb1) lacks a Golgi and a vacuolar membrane Ca2+ pump and grows very poorly on Ca2+-depleted medium. Membranes isolated from the mutant showed high H+/Ca2+-antiport but no Ca2+-pump activity. Expression of ECA1 in endomembranes increased mutant growth by 10- to 20-fold in Ca2+-depleted medium. 45Ca2+ pumping into vesicles from ECA1 transformants was detected after the H+/Ca2+-antiport activity was eliminated with bafilomycin A1 and gramicidin D. The pump had a high affinity for Ca2+ (Km = 30 nM) and displayed two affinities for ATP (Km of 20 and 235 microM). Cyclopiazonic acid, a specific blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, inhibited Ca2+ transport (50% inhibition dose = 3 nmol/mg protein), but thapsigargin (3 microM) did not. Transport was insensitive to calmodulin. These results suggest that this endoplasmic reticulum-type Ca2+-ATPase could support cell growth in plants as in yeast by maintaining submicromolar levels of cytosolic Ca2+ and replenishing Ca2+ in endomembrane compartments. This study demonstrates that the yeast K616 mutant provides a powerful expression system to study the structure/function relationships of Ca2+ pumps from eukaryotes.  相似文献   

14.
A thapsigargin C8-derivative (ZTG) was synthesized by acylating debutanoylthapsigargin with 4-azido[carboxyl-14C]benzoic acid. ZTG retains the inhibitory activity of thapsigargin (TG) with respect to the Ca2+ ATPase of sarcoplasmic reticulum (SR). Covalent ATPase labeling was obtained by photoactivation of the ZTG azido moiety under conditions optimized to reduce nonspecific association of ZTG with SR vesicles and to approximate a matching ZTG:ATPase stoichiometry. Specific photolabeling of the Ca2+ ATPase with ZTG was obtained with 30% efficiency and was competitively inhibited by TG. Analysis of the labeled protein and its proteolytic fragments demonstrates that the ZTG label is associated covalently with the membrane-bound portion of tryptic subfragment A1, which spans the sequence between Leu253 and Arg324 and includes segments of S3 and S4 in the stalk, the M3 and M4 transmembrane helices, and the intervening lumenal loop. This finding is in agreement with previous spectroscopic observations and mutational analysis.  相似文献   

15.
The oncogene bcl-2 encodes a 26-kD protein localized to intracellular membranes, including the ER, mitochondria, and perinuclear membrane, but its mechanism of action is unknown. We have been investigating the hypothesis that Bcl-2 regulates the movement of calcium ions (Ca2+) through the ER membrane. Earlier findings in this laboratory indicated that Bcl-2 reduces Ca2+ efflux from the ER lumen in WEHI7.2 lymphoma cells treated with the Ca2+-ATPase inhibitor thapsigargin (TG) but does not prevent capacitative entry of extracellular calcium. In this report, we show that sustained elevation of cytosolic Ca2+ due to capacitative entry is not required for induction of apoptosis by TG, suggesting that ER calcium pool depletion may trigger apoptosis. Bcl-2 overexpression maintains Ca2+ uptake in the ER of TG-treated cells and prevents a TG-imposed delay in intralumenal processing of the endogenous glycoprotein cathepsin D. Also, Bcl-2 overexpression preserves the ER Ca2+ pool in untreated cells when extracellular Ca2+ is low. However, low extracellular Ca2+ reduces the antiapoptotic action of Bcl-2, suggesting that cytosolic Ca2+ elevation due to capacitative entry may be required for optimal ER pool filling and apoptosis inhibition by Bcl-2. In summary, the findings suggest that Bcl-2 maintains Ca2+ homeostasis within the ER, thereby inhibiting apoptosis induction by TG.  相似文献   

16.
Nitric oxide (NO) is a potent inhibitor of thrombin-induced increase in cytoplasmic free Ca2+ concentration and aggregation in platelets, but the precise mechanism of this inhibition is unclear. To measure Ca2+/Mn2+ influx in intact platelets and to monitor Ca2+ uptake into the stores in permeabilized platelets, fura-2 was used. In intact platelets, maximal capacitative Ca2+ and Mn2+ influx developed rapidly (within 30 s) after fast release of Ca2+ from the stores with thrombin (0.5 U/mL) or slowly (within 5 to 10 minutes) following passive Ca2+ leak caused by inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) with 30 micromol/L 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ). NO (1 micromol/L) inhibited capacitative Ca2+ and Mn2+ influx independently of the time after thrombin application. In contrast, the effect of NO on BHQ-induced Ca2+ and Mn2+ influx was observed only during the first few minutes after BHQ application and completely disappeared when capacitative cation influx reached its maximum. In Ca2+-free medium, NO reduced the peak Ca2+ rise caused by thrombin and significantly promoted Ca2+ back-sequestration into the stores. Both effects disappeared in the presence of BHQ. Inhibition of guanylate cyclase with H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (10 micromol/L) attenuated but did not prevent the effects of NO on cytoplasmic free Ca2+ concentration. Inhibition of Ca2+ uptake by mitochondria did not change the effects of NO. In permeabilized platelets, NO accelerated back-sequestration of Ca2+ into the stores after inositol-1,4,5-trisphosphate-induced Ca2+ release or after addition of Ca2+ (1 micromol/L) in the absence of inositol-1,4,5-trisphosphate. The effect of NO depended on the initial rate of Ca2+ uptake and on the concentration of ATP and was abolished by BHQ, indicating the direct involvement of SERCA. These data strongly support the hypothesis that NO inhibits store-operated cation influx in human platelets indirectly via acceleration of SERCA-dependent refilling of Ca2+ stores.  相似文献   

17.
The amount of cardiac sarcoplasmic reticulum in rat hearts was estimated by comparing marker activities in the isolated SR fraction with their activities in the homogenate. Four distinguishable markers were measured: the oxalate-supported rate of calcium uptake, the calcium oxalate capacity, 3H-ryanodine binding and the thapsigargin equivalents. The calcium uptake rate and capacity and thapsigargin equivalents were determined in the presence and absence of SR Ca2+ channel blockade with high concentrations of ryanodine. All of these activities are believed to be located only in the SR. However, the calculation of the heart content of SR was somewhat different for the four markers. The calcium uptake rate gave 8.4 mg SR protein per g tissue in the absence of ryanodine, and 9.6 mg per g in its presence; calcium oxalate capacity gave similar numbers, 9.9 mg per g in the absence of ryanodine and 8.0 mg per g in its presence. The thapsigargin titration gave similar equivalent with or without ryanodine, indicating that the homogenate contained about 8.0 mg of SR per g tissue. Using 3H-ranodine binding as a marker, the cardiac content of SR was calculated to be 16.7 mg per g. These differences are attributed to the non-ideal behavior of these markers. Some of the Ca2+ uptake activity is not thapsigargin sensitive, and some of the 3H-ryanodine binding does not fractionate with the SR Ca2+ uptake activity.  相似文献   

18.
Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-dependent protein kinase has been proposed to provide additional regulation. To investigate these effects in detail, we have purified Ca2+-ATPase from cardiac sarcoplasmic reticulum using affinity chromatography and reconstituted it with purified, recombinant phospholamban. The resulting proteoliposomes had high rates of calcium transport, which was tightly coupled to ATP hydrolysis (approximately 1.7 calcium ions transported per ATP molecule hydrolyzed). Co-reconstitution with phospholamban suppressed both calcium uptake and ATPase activities by approximately 50%, and this suppression was fully relieved by a phospholamban monoclonal antibody or by phosphorylation either with cAMP-dependent protein kinase or with calcium/calmodulin-dependent protein kinase. These effects were consistent with a change in the apparent calcium affinity of Ca2+-ATPase and not with a change in Vmax. Neither the purified, reconstituted cardiac Ca2+-ATPase nor the Ca2+-ATPase in longitudinal cardiac sarcoplasmic reticulum vesicles was a substrate for calcium/calmodulin-dependent protein kinase, and accordingly, we found no effect of calcium/calmodulin-dependent protein kinase phosphorylation on Vmax for calcium transport.  相似文献   

19.
20.
9-Methyl-7-bromoeudistomin D (MBED), the most powerful caffeine-like releaser of Ca2+ from skeletal muscle sarcoplasmic reticulum, induced Ca2+ release from the cardiac sarcoplasmic reticulum. MBED (5 microM) and caffeine (1 mM) caused rapid Ca2+ release from the fragmented cardiac sarcoplasmic reticulum in a Ca2+ electrode experiment. [3H]MBED bound to a single class of high-affinity binding sites in cardiac sarcoplasmic reticulum membranes (Kd = 150 nM). These results suggest that MBED binds to a specific binding site on cardiac sarcoplasmic reticulum membranes to induce Ca2+ release from the cardiac sarcoplasmic reticulum. Thus, MBED is a useful probe for characterizing Ca2+ release the channels not only in skeletal sarcoplasmic reticulum but also in cardiac sarcoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号