首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma spraying is used to produce wear resistant coatings. However, the primary problem is the poor bonding strength between the coating and the substrate. The secondary problem is the high porosity in the as-sprayed coatings, which reduces the wear resistance of coating. In order to overcome these problems, the sealing of plasma-sprayed coating by electrodeposition has been used. The sealing of plasma-sprayed coatings alters the wear mechanism and wear resistance. The wear mechanism and wear resistance largely depends on the applied load, sliding speed and sliding distance. Hence, an effort has been made in the present work to study the effects of these parameters on wear volume loss using response surface methodology (RSM)-based mathematical models. The experiments were conducted as per Central Composite Design (CCD). It reveals that the applied load was the most predominant factor affecting the wear volume loss of the coating material. The sliding speed is the next most important parameter influencing the wear volume loss. The wear volume loss of the sealed plasma-sprayed molybdenum coating occurs mainly due to the formation of grooves, surface tribo films, fracture of splats and delamination of the coating.  相似文献   

2.
镍基合金喷熔层摩擦学行为与机制的研究   总被引:1,自引:0,他引:1  
采用热喷熔工艺制备了两种镍基合金喷熔层,并选用高锰钢、不锈钢作为对比材料,研究了镍基合金喷熔层的摩擦磨损性能。研究结果表明:镍基合金喷熔层具有良好的耐磨损性能和较低的摩擦系数。镍含量对喷熔层的摩擦学性能有显著影响,高镍含量的镍基合金,其耐磨性能明显优于低镍含量的镍基合金。在低速轻载条件下,镍基合金喷熔层的磨损机理为微观犁削;高速重载时,表现为粘着磨损和磨料磨损,其中高镍含量的喷熔层表面形成了致密的转移膜,有效地降低了磨损率。  相似文献   

3.
TiN and TiAlN thin hard coatings have been widely applied on machine components and cutting tools to increase their wear resistance. These coatings have different wear behaviors, and determination of their wear characteristics in high-temperature and high-speed applications has great importance in the selection of suitable coating material to application. In this article, the wear behavior of single-layer TiN and TiAlN coatings was investigated at higher sliding speed and higher sliding distances than those in the literature. The coatings were deposited on AISI D2 cold-worked tool steel substrates using a magnetron sputtering system. The wear tests were performed at a sliding speed of 45 cm/s using a ball-on-disc method, and the wear area was investigated at seven different sliding distances (36–1,416 m). An Al2O3 ball was used as the counterpart material. The wear evolution was monitored using a confocal optical microscope and surface profilometer after each sliding test. The coefficient of friction and coefficient of wear were recorded with increasing sliding distance. It was found that the wear rate of the TiAlN coating decreases with sliding distance and it is much lower than that of TiN coating at longer sliding distance. This is due to the Al2O3 film formation at high temperature in the contact zone. Both coatings give similar coefficient of friction data during sliding with a slight increase in that of the TiAlN coating at high sliding distances due to the increasing alumina formation. When considering all results, the TiAlN coating is more suitable for hard machining applications.  相似文献   

4.
Dong-Wook Kim  Kyung-Woong Kim 《Wear》2013,297(1-2):722-730
Friction and wear tests were performed to investigate effects of sliding velocity and normal load on tribological characteristics of a multi-layered diamond-like carbon (DLC) coating for machine elements. The DLC coatings which consist of sequentially deposited gradient Cr/CrN, W-doped DLC (a-C:H:W) and DLC (a-C:H) layers were formed on carburized SCM 415 Cr–Mo steel disks using a reactive sputtering system. The tests against AISI 52100 steel balls were performed under various sliding velocities (0.0625, 0.125, 0.25, 0.5, 1 and 2 m/s) and normal loads (6.1, 20.7 and 49.0 N) in ambient air (relative humidity=26±2%, temperature=18±2 °C). Each test was conducted for 20 km sliding distance without lubricating oil. The results show that friction coefficients decrease with the increase in sliding velocity and normal load. Wear rates of both surfaces decrease with the increase in normal load. The increase in sliding velocity leads initially to the increase in wear rates up to the maximum value. Then, they decrease, as the sliding velocity increases above specific value that corresponds to the maximum wear rate. Through surface observation and analysis, it is confirmed that formation of transfer layers and graphitized degree of wear surfaces of DLC coatings mainly affect its tribological characteristics.  相似文献   

5.
采用氧一乙炔焰喷熔工艺制备了碳化钨(WC)颗粒增强镍基合金喷熔层,研究了它的腐蚀磨损行为。结果表明:喷熔层耐腐蚀磨损性能随WC含量增加而提高,WC含量在20%~30%范围内,喷熔层耐腐蚀磨损性能最佳,超过30%时,其耐腐蚀磨损性能下降。载荷增加,腐蚀磨损率增大;速度增加,腐蚀磨损率下降。低速重载荷时,WC颗粒增强效果明显,且含30%WC喷熔层耐腐蚀磨损性能最好;高速轻载荷时,因WC原电池效应显著,WC颗粒增强效果减弱。基于人工神经网络的喷熔层腐蚀磨损行为预测与实验结果吻合较好,对喷熔层的应用具有重要指导作用。  相似文献   

6.
A CO2 laser was used to fuse based Ni–Cr Cr3C2 coatings for the purpose of homogenizing their microstructures and eliminating their porosity. Tests of layer control and wear resistance were carried out on the samples treated with the laser. The results have shown that laser remelting improves the microstructure of the coatings, increases the coating microhardness, and improves coating–substrate adherence. The dry sliding wear behaviour was characterized by the existence of two periods. During the first period the square of the wear volume is proportional to the sliding distance. During the second, the wear volume is proportional to the sliding distance.  相似文献   

7.
Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1589-1599
This paper describes the tribological performance of diamond-like carbon (DLC) coatings deposited on AISI 440C steel substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process. A variety of analytic techniques were used to characterize the coatings, such as Raman spectroscopy, atomic force microscopy (AFM) and nano-indentation. The sliding wear and friction experiments were carried out by the conventional ball-on-disk tribometry against 100Cr6 steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). All the wear tests were conducted under dry sliding condition in ambient air for a total rotation cycle of 1 × 105 (sliding distance ∼2.2 km). Surfaces of the coatings and the steel balls were examined before and after the sliding wear tests. The DLC coatings that had been tested all showed relatively low values of friction coefficient, in the range of 0.1-0.2 at a steady-state stage, and low specific wear rates (on the order of 10−8 mm3/Nm). It was found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Plastic deformation became more evident on the coating surface during the sliding wear test at higher contact stresses. The friction-induced transformation of the coating surface into a graphite-like phase was revealed by micro-Raman analysis, and the flash temperature of the contact asperities was estimated. It was suggested that the structural transformation taking place within the wear tracks was mainly due to the formation of compact wear debris layer rather than the frictional heating effect. On the other hand, an adherent transfer layer (tribolayer) was formed on the counterface, which was closely related to the steady-state friction during sliding and the wear mechanisms. Fundamental knowledge combined with the present tribological study led to the conclusion that adhesive wear along with abrasion was probably the dominant wear mechanism for the DLC/steel sliding systems. Additionally, fatigue processes might also be involved in the wear of the coatings.  相似文献   

8.
MoS2–Cr coatings with different Cr contents have been deposited on high speed steel substrates by closed field unbalanced magnetron (CFUBM) sputtering. The tribological properties of the coatings have been tested against different counterbodies under dry conditions using an oscillating friction and wear tester. The coating microstructures, mechanical properties and wear resistance vary according to the Cr metal-content. MoS2 tribological properties are improved with a Cr metal dopant in the MoS2 matrix. The optimum Cr content varies with different counterbodies. Showing especially good tribological properties were MoS2–Cr8% coating sliding against either AISI 1045 steel or AA 6061 aluminum alloy, and MoS2–Cr5% coating sliding against bronze. Enhanced tribological behavior included low wear depth on coating, low wear width on counterbody, low friction coefficients and long durability.  相似文献   

9.
《Wear》2007,262(7-8):868-875
The Ni-based surface coatings were prepared by a vacuum infiltration casting technique on copper substrate. The surface coatings were fabricated through copper melt penetrating into thin preforms whose thickness could change. By optimizing the processing parameters, compact surface coatings were achievable as confirmed through SEM observation. The surface coating was mainly composed of solid solution of Ni, solid solution of Cu and CrB. The macro-hardness of the coating was about HRC 58, and the micro-hardness of the coating shows a gradient distribution. The average micro-hardness of the coating was about HV450. Wear behaviour was investigated by using block-on-ring dry sliding linear contact at several loads (50 N–300 N) and two different sliding speeds (0.424 m/s and 0.848 m/s). Wear rate and friction coefficient were estimated using a method founded upon the PV factor theory. The surface oxidation predominated as the principle wear mechanism at low load. Meanwhile, adhesion and oxidation mechanism were observed when the coatings were tested at higher load more than 200 N. Friction coefficient decreased with increasing load and sliding speed.  相似文献   

10.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

11.
J. D. Bressan  R. Hesse  E. M. Silva  Jr.   《Wear》2001,250(1-12):561-568
The wear behavior of M2 high speed HSS steel and WC hard metal coated with TiAlN and TiCN were investigated and compared, using the pin on disk standard test with different loads. The coating PVD process has been done by two different suppliers, using an industrial equipment unit with optimized conditions. The coated layers were measured and characterized. The load, sliding distance and velocity of 0.5 m/s were kept constant during the abrasion test in order to control these variables. The counterface disks used were electric steel sheets from three different suppliers. The lost volume and temperature at the pin end have been measured during the wear test. Comparisons of tribological performance for the coated HSS and hard metal were done, using a plot of lost volume versus sliding distance for substrates and coatings. The pin worn surfaces were observed using a scanning electron microscope. A significant increase in the wear resistance of M2 steel and WC hard metal when coated with TiAlN and TiCN was observed. Quality of these coatings depended upon the supplier. Excessive porosity has diminished the TiAlN counting wear resistance from one supplier. However, in general the performance of TiAlN is superior to TiCN. The pin wear rate depended on the disk microstructure.  相似文献   

12.
J.L. Mo 《Tribology International》2008,41(12):1161-1168
The sliding tribological behavior of the PVD AlCrN coating against Si3N4 ball have been investigated by using the CETR multi-functional UMT-2 test system under two sliding conditions (bidirectional and unidirectional). Reciprocating sliding tests (bidirectional) were performed under varied normal loads (5, 10 and 20 N) at sliding velocity of 0.48 m/min. Ball-on-disc tests (unidirectional) were performed at varied sliding velocities (0.48 and 5 m/min) under normal load of 5 N. The wear scars of the coating were evaluated by surface profilometer, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the sliding wear mechanism of the coating was consequently discussed. The results showed that AlCrN coating had excellent anti-abrasion properties. Both the normal load in reciprocating sliding test and the sliding velocity in ball-on-disc test had significant influence on the sliding tribological behavior of the AlCrN coating. The combination of abrasion and oxidation was the main sliding wear mechanism for the AlCrN coating. The wear resistant and thermally stable oxides formed by the tribo-chemical reactions of chromium and aluminum protected the AlCrN coating against wear admirably.  相似文献   

13.
《Wear》2002,252(9-10):824-831
Polyetheretherketone (PEEK) becomes of great interest to applications as bearing and slider materials. In this paper, PEEK coatings with three kinds of crystallinities were deposited using the flame spray process. Employing a uniform design experiment, the friction and wear behavior of the three PEEK coatings were systematically investigated under dry sliding conditions against a 100C6 counterbody on a ball-on-disc arrangement for several loads and sliding velocities. For the three coatings, the friction coefficient significantly followed the normal distribution. The average friction coefficients appeared to decrease while increasing the sliding velocity, but were insensitive to the applied load in the range of investigation. Among the three coatings, the higher the crystallinity of the coating, the lower its average friction coefficient was. The wear rate of the coating with the lowest crystallinity decreased with an increase in the load and a decrease in the sliding velocity. The wear rate of the coating with the intermediate crystallinity decreased with an increase in the load, but increased with an increase in the sliding velocity at lower loads, and then decreased with an increase in the velocity at higher loads. The wear rate of the coating with the highest crystallinity decreased with the increase of both the load and the sliding velocity. The wear mechanisms of the different coatings are explained in terms of plastic deformation, plogh marks and fatigue tearing.  相似文献   

14.
为提高采煤机滑靴在无油工况下的耐磨性,采用激光熔覆技术在45钢为基体上分别制备FeNiMo和FeNiMoSi涂层,并对其物相组成及硬度等进行分析。结果发现:制备的涂层结构致密,与基底保持了良好的冶金结合;FeNiMoSi涂层的平均硬度为438HV,分别约为基体(153HV)的2.8倍以及FeNiMo涂层(385HV)的1.1倍。通过往复式摩擦磨损试验机研究涂层的干摩擦磨损性能,并探讨其磨损机制。结果表明:随着载荷和滑动速度的增大,涂层的摩擦因数均呈现出减小的趋势;随着载荷的增大,涂层的磨损率逐渐升高;随着滑动速度的增大,FeNiMo涂层的磨损率出现先下降后上升的趋势,而FeNiMoSi涂层的磨损率则逐渐下降;涂层的磨损机制主要为磨粒磨损、塑性变形以及轻微的氧化磨损。总体来说,FeNiMoSi涂层相比FeNiMo涂层表现出更好的耐磨性能,这是因为涂层中Si元素的添加,不仅起到细晶强化作用,而且促进了FeSi金属间化合物相的生成。  相似文献   

15.
A Ni-based alloy with 1.5 wt% of La2O3 powders was thermal sprayed onto steel substrate. The microstructure and dry sliding wear behavior of the coatings were studied by XRD, field emission gun scanning electron microscope (FEGSEM) and SEM analyses. The microstructure of the coating with 1.5 wt% of La2O3 differs widely from the coating without La2O3; the typical microstructure with 1.5 wt% of La2O3 is composed of net-like dendrite (Cr, Fe)23C6 and Cr7C3, cellular-dendrite Fe23(C, B)6, γ-Ni + Ni5Si2 interdendritic lamellar eutectic. Interestingly, significant amounts of net-like (Cr, Fe)23C6 and Cr7C3 hard phases as a wear-resistant skeleton were formed and uniformly dispersed in the coating. Meanwhile, blocky and rod-like hard-phase CrB scattered in the coating can also contribute to improving the wear resistance. The novel microstructure, therefore, is beneficial for wear resistance. Friction and wear tests without lubricant show that the friction coefficients of the coating are less than 0.57. There is an approximately linear relationship between friction coefficients and sliding speed. The wear rate slightly increases with an increase of load, and the wear rate of the coating slightly decreases with sliding speed.  相似文献   

16.
The tribological properties of Ni3Al-Cr7C3 composite coating under water lubrication were examined by using a ball-on-disc reciprocating tribotester. The effects of load and sliding speed on wear rate of the coating were investigated. The worn surface of the coating was analyzed using electron probe microscopy analysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The results show the friction coefficient of the coating is decreased under water lubrication. The wear rate of the coating linearly increases with the load. At high sliding speed, the wear rate of the coating is dramatically increased and a large amount of the counterpart material is transferred to the coating worn surface. The low friction of the coating under water lubrication is due to the oxidizing of the worn surface in the wear. The wear mechanism of the coating is plastic deformation at low normal load and sliding speed. However, the wear mechanism transforms to microfracture and microploughing at high load with low sliding speed, and oxidation wear at high sliding speed. It is concluded that the contribution of the sliding speed to an increase in the coating wear is larger than that of the normal load.  相似文献   

17.
WC-based coatings deposited by high velocity oxy-fuel (HVOF) spraying have been widely used in many industrial fields, where mechanical components are subjected to severe abrasive wear. Much attention has been especially paid to nanostructured and multimodal WC-based coatings due to their excellent abrasive wear resistance. In this study, a new kind of multi-dimensional WC-10Co4Cr coating, composed of nano, submicron, micron WC particles and CoCr alloy, was developed by HVOF. The microstructure, porosity, microhardness, fracture toughness, and electrochemical properties of the coating were investigated in comparison with nanostructured WC-10Co4Cr coating deposited by HVOF. Abrasive wear resistance of both WC-10Co4Cr coatings was evaluated on wet sand rubber wheel abrasion tester. The results show that the multi-dimensional coating possesses low porosity (0.31 ± 0.09%), excellent microhardness (1126 ± 115 HV0.3), fracture toughness (4.66 ± 0.51 MPa m1/2), and outstanding electrochemical properties. Moreover, the multi-dimensional coating demonstrates approximately 36% wet abrasive resistance enhancement than the nanostructured coating. The superior abrasive wear resistance originates from the coating’s multi-dimensional structure and excellent mechanical and electrochemical properties.  相似文献   

18.
《Wear》2007,262(3-4):301-307
Flame spray coatings are widely used in industry because of low cost and process simplicity. However, high porosity and poor adherence to the substrate means that quality is poor, though it can nevertheless be improved by subjecting coatings to a remelting using a technique that usually involves an oxyacetylene flame. The study that follows is an attempt to evaluate a laser technique as an alternative to the more traditional flame remelting of flame spray layers, using grey cast iron (DIN GG30) as the substrate and a NiCrBSi alloy as the coating material. Coatings obtained by laser remelting exhibited a practically pore-free microstructure with good adherence to the substrate. The limited control of process parameters during flame remelting led in some cases to incomplete melting of the full thickness of the layers. Hardness of the remelted coatings was very similar in both cases, with values that were slightly lower than for flame-spray layers. The tribological behaviour of both coating types was then compared in dry sliding wear tests (block-on-ring tests) at various loads (30–100 N) and sliding speeds (0.65–2.62 m/s). Both coatings wear rates and wear rate coefficients k (mm3/Nm) were calculated. No significant differences in wear performance between the two coatings were found. A severe wear regime with adhesion as the principal component was observed at the higher test loads. The predominant wear mechanism at the lower test velocities was oxidation.  相似文献   

19.
Diamond-like-carbon (DLC) coating of thickness 3 and 10 μm were developed with and without radical nitriding pretreatment on steel rollers and spur gear pair. The friction coefficient and wear amount were evaluated under sliding rolling contact condition in vacuum and under oil lubrication. Delamination of coatings was observed at the interface of the substrate. The wear resistance of coatings improved with the thickness of the coating. In vacuum both the roller and the gear pair of 10 μm coating thickness with radical nitriding showed identical wear behavior. The radical nitriding seemed to enhance the life of DLC coatings.  相似文献   

20.
This study investigates the influence of sliding speed and normal load on the friction and wear of plasma-sprayed Cr2O3 coatings, in dry and lubricated sliding against AISI D2 steel. Friction and wear tests were performed in a wide speed range of 0.125–8 m/s under different normal loads using a block-on-ring tribometer. SEM, EDS and XPS were employed to identify the mechanical and chemical changes on the worn surfaces. A tangential impact wear model was proposed to explain the steep rising of wear from the minimum wear to the maximum wear. The results show that the wear of Cr2O3 coatings increases with increasing load. Secondly, there exist a minimum-wear sliding speed (0.5 m/s) and a maximum-wear sliding speed (3 m/s) for a Cr2O3 coating in dry sliding. With the increase of speed, the wear of a Cr2O3 coating decreases in the range 0.125–0.5 m/s, then rises steeply from 0.5 m/s to 3 m/s, followed by a decrease thereafter. The large variation of wear with respect to speed can be explained by stick-slip at low speeds, the tangential impact effect at median speeds and the softening effect of flash temperature at high speeds. Thirdly, the chemical compositions of the transfer film are a-Fe2O3 in the speed range 0.25–2 m/s, and FeO at 7 m/s. In addition, the wear mechanisms of a Cr2O3 coating in dry sliding versus AISI D2 steel are adhesion at low speeds, brittle fracture at median speeds and a mixture of abrasion and brittle fracture at high speeds. Finally the lubricated wear of Cr2O3 coating increases sharply from 1 to 2.8 m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号