首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry sliding wear tests of Ti–6.5Al–3.5Mo–1.5Zr–0.3Si alloy (TC11 alloy) sliding against AISI 52100 and AISI M2 steels were performed under the load of 50–250 N at 25–600 °C. For two kinds of counterface materials, the titanium alloy presented totally different wear behaviours as the function of temperature. The appreciable variations of the titanium alloy sliding against different counterface materials were attributed the fact that a hard counterface caused unstable existence of tribo-layers by its microcutting action, thus resulting in the increase of wear rate. It is suggested that the hard counterface must be avoided as the counterface for the titanium alloy/steel sliding system.  相似文献   

2.
Bronze–SiC–nickel coated graphite composites were fabricated by powder metallurgy technique (P/M). The tribological properties of composites sliding against AISI321 stainless steel pin were studied under sea water condition. The graphite is an effective solid lubricant in sea water environment. The SiC improved the hardness and tribological properties of composites. The friction coefficient of bronze–SiC–graphite composites increased with the increase of SiC. However, the specific wear rate of bronze–SiC–graphite composites decreased with increasing SiC. Bronze-2 wt% SiC-11.7 wt% nickel coated graphite composite showed the best tribological properties due to the synergistic effects of reinforcements.  相似文献   

3.
《Wear》2006,260(7-8):832-837
The reactive plasma spraying (RPS) of titanium powders in a nitrogen containing plasma gas produces thick coatings characterised by microdispersed titanium nitride phases in a titanium matrix. In this paper, the wear resistance properties of Ti–TiN coatings deposited on carbon steel substrates by means of RPS technique are studied. Wear tests were performed in block-on-ring configuration and dry sliding conditions, at different applied loads (45 and 100 N) and sliding velocities (in the range 0.4–2.0 m s−1) by using hardened and stress relieved AISI O2 disks as counterpart. At low applied load the wear volumes are low, and tend to slightly increase as the sliding velocity increases. At high applied load and low sliding velocities the highest wear volumes for the coated samples are observed, due to adhesion in the contact area with the tool steel counterpart and decohesion of coating particles. As the sliding velocity is increased, the wear volume of the coated samples tends to decrease owing to oxidation phenomena.  相似文献   

4.
《Wear》2007,262(1-2):93-103
A pin on disc machine was used to investigate the tribological behavior of a diffusion bonded sintered steel, with and without surface treatments of steam oxidation and manganese phosphating, over a wide range of speed (0.2–4 m/s) and applied load (4–500 N) in conditions of dry sliding and starved lubrication by oil impregnation of the porous structure of the materials. Besides the calculated wear rates, the wear mechanisms were determined by examination of the components of the rubbing system (sintered pin, disc and generated debris). A transition from a mild to a severe wear regime was identified, denoted by sharp changes of the wear rate. A transient wear regime, interposed between the mild and severe wear regimes, was detected. The rubbing surface quality degradation was in terms of material displacement around the pin circumference due to a delamination wear mechanism. Such regime was detected for the base sintered steel in dry sliding at 1 m/s for the load range 60–80 N and for both surface treatments in oil impregnated sliding at 0.5 m/s for the load range 200–300 N. Oil impregnation of the base sintered steel expanded the mild wear regime towards higher loads throughout the whole sliding speed range compared to dry sliding. For the lower speeds of 0.2 and 0.5 m/s, manganese phosphated samples in dry sliding exhibited higher transition loads compared to the base sintered steel. The lower oil impregnability of the surface treated samples, due to the sealing of porosity by steam oxidation, led to slightly lower transition loads in oil impregnated sliding, compared to the base sintered steel.  相似文献   

5.
An experimental study was performed to investigate the effect of atomic attrition on wear behavior of AISI D2 steel. Wear tests were conducted under three different loads (5, 10, and 20 N) and sliding speeds (100, 200, and 500 rpm), using ball-on-disk type tester and SiC ball. After wear test, the specimen nitrided with ion bombardment showed superior wear behavior. The enhanced hardness by ion bombardment could have a beneficial effect on increased wear resistance. In addition, a wider and more adhesive oxide layer formed on the worn surface of ion-bombarded specimen, because of the rougher structure on the surface by ion bombardment, could lead the surface to withstand wear for longer duration time, acting as a protective layer.  相似文献   

6.
A fundamental study of wear transition regimes was carried out for a pin-on-disk sliding couple, involving titanium and steel. The sliding speed was varied from 0.38 to 1.5 m s−1 and the normal load from 10 to 50 N. Wear mapping approaches have been undertaken to represent the transitions in wear modes and wear mechanisms regimes, as a function of applied normal loads and sliding speeds and for both pin and disc separately on the basis of experimental results. Dry sliding wear behaviour of steel was characterized by tribo-oxidative wear with high material transfer from the titanium. In contrast, adhesive wear was more prevalent for the titanium and oxidative wear mechanisms led to formation of non-protective films on the surface.  相似文献   

7.
H11 steel discs were tested by considering sliding/rolling friction under dry and lubricated conditions. The H11 discs were plasma nitrided at 500 °C and 550 °C for 9 h. Wear tests were conducted at different slip ratios of 1.79%, 10.53% and 22.22%. The test loads were 100 N, 150 N and 200 N. It was determined that plasma-nitrided H11 discs had a surface hardness of 1200–1400 HV0.1. Plasma nitriding produced wear performance much higher than those of the un-nitrided but hardened samples. The wear mechanism of the plasma-nitrided discs was a mixture of adhesive wear, abrasive wear and plastic yielding.  相似文献   

8.
In this investigation, response surface method was used to predict and optimize the material removal rate and tool wear ratio during electrical discharge machining of AISI D6 tool steel. Pulse on time, pulse current, and voltage were considered as input process parameters. Furthermore, the analysis of variance was employed for checking the developed model results. The results revealed that higher values of pulse on time resulted in higher values of material removal rate and lower amounts of tool wear ratio. In addition, increasing the pulse current caused to higher amounts of both material removal rate and tool wear ratio. Moreover, the higher the input voltage, the lower the both material removal rate and tool wear ratio. The optimal condition to obtain a maximum of material removal rate and a minimum of tool wear rate was 40 μs, 14 A and 150 V, respectively for the pulse on time, pulse current and input voltage.  相似文献   

9.
《Wear》2007,262(7-8):826-832
The non-lubricated, sliding friction and wear behavior of Ti3Si(Al)C2 and SiC-reinforced Ti3Si(Al)C2 composites against AISI 52100 bearing steel ball were investigated using a ball-on-flat, reciprocating tribometer at room temperature. The contact load was varied from 5 to 20 N. For monolithic Ti3Si(Al)C2, high friction coefficients between 0.61 and 0.90 and wear rates between 1.79 × 10−3 and 2.68 × 10−3 mm3 (N m)−1 were measured. With increasing SiC content in the composites, both the friction coefficients and the wear rates were significantly decreased. The friction coefficients reduced to a value between 0.38 and 0.50, and the wear rates to between 2.64 × 10−4 and 1.93 × 10−5 mm3 (N m)−1 when the SiC content ranged from 10 to 30 vol.%. The enhanced wear resistance of Ti3Si(Al)C2 is mainly attributed to the facts that the hard SiC particles inhibit the plastic deformation and fracture of the soft matrix, the oxide debris lubricate the counterpair, and the wear mode converts from adhesive wear to abrasive wear during dry sliding.  相似文献   

10.
《Wear》2004,256(3-4):386-392
Friction and wear of ASTM B211 aluminium–AISI 52100 steel contacts have been determined using pin-on-disk tests under variable conditions of normal applied load, sliding speed and temperature, in the presence of a lubricating base oil modified with a 1 wt.% proportion of three different liquid crystalline additives.The tribological behavior of the ionic liquid crystal n-dodecylammonium chloride (LC3) has been compared with that of two neutral liquid crystals: a non-polar species, 4,4′-dibutylazobenzene (LC1) which had previously shown its ability to lower friction and wear of metallic pairs as compared to the base oil, and a cholesterol derivative, cholesteryl linoleate (LC2).At low temperature and low sliding speed values, the friction coefficients obtained for LC1 are lower than those of LC3. As the severity of the contact conditions increases, this tendency reverses and the ionic species LC2 gives rise to lower friction values than LC1.Wear volume losses under increasing normal loads, between 2.45 and 5.89 N, are always lower in the presence of the ionic additive LC3.Lubrication and wear mechanisms are discussed from optical microscopy and SEM observation of the wear scars and wear debris morphology.  相似文献   

11.
To investigate on the crystalline structure of AISI M2 steel by using tungsten–thorium electrode in electrical discharge machining (EDM) process was studied. Furthermore, the investigation were carried out for finding the value of material removal rate (MRR), electrode wear rate (EWR) and surface roughness (SR) of tool steel material depending upon three variable input process parameters. On the basis of weight loss, the value of MRR and EWR were calculated at optimized process parameter. Subsequently, surface topography of the processed material were examined through different characterization techniques like scanning electron microscopy (SEM), Optical surface profiler (OSP) and Atomic force microscopy (AFM), respectively. In XRD study, broadening of the peak was observed which confirmed the change in material properties due to the homogeneous dispersion of the particles inside the matrix. Lowest surface roughness and MRR of 0.001208 mg/min was obtained. Minimum surface roughness was obtained 1.12 μm and 2.18427 nm by OSP and AFM study, respectively. Also, minimum EWR was found as 0.013986 mg/min.  相似文献   

12.
《Wear》2002,252(11-12):870-879
Evolution of friction and wear of 42CrAlMo7 steels with different nitriding processes was investigated during boundary-lubricated rolling–sliding tests. The wear behaviour of nitrided steel with a thin compound layer (produced by plasma nitriding and by gas nitriding followed by oxidation) was characterised by the early removal of the compound layer, and the wear resistance was thus, given by the underlying diffusion layer. In the case of the material with a thick compound layer (produced by gas nitriding) wear was restricted to the compound layer. In this material, at low applied load (300 N, i.e. 485 MPa of Hertzian pressure, in this work), after the removal of the external porous layer wear tended to be negligible. At high applied load (1000 N, 890 MPa), on the other hand, the wear rate became higher than that of the diffusion layer. The friction behaviour was followed by determining the λ-factor evolution during each test. For a given λ-factor, the friction coefficients at 300 N were lower than at 1000 N.  相似文献   

13.
《Wear》2006,260(4-5):479-485
In the present work, industrial-scale DC-pulsed plasma nitriding for 20 h at 673 K was used to improve the wear resistance of an AISI 410 martensitic stainless steel. The tribological behaviour was studied and compared to the behaviour of the same steel in as-received condition.Pin-on-disc dry tests, using an alumina ball as counter-body, were carried out to determine the evolution of the friction coefficient. The wear resistance was investigated using an Amsler-disc-machine, employing a dry combined contact of rolling–sliding with three different applied loads. The wear mechanisms involved during rolling–sliding of unnitrided and plasma nitrided steels were investigated by microscopic observation of the surfaces, the corresponding cross-sections and the produced wear debris.The combination of different wear mechanisms taking place in the wear process of unnitrided and nitrided materials were discussed and analyzed. In contrast to the unnitrided steel, DC-pulsed plasma nitrided samples presented an improvement in the friction coefficient and the wear rate.  相似文献   

14.
Dry sliding tests were performed for 45, 4Cr5MoSiV1 steels and 3Cr3Mo2V cast steel at 200 and 400 °C. The wears at 200 and 400 °C are of oxidative wear characteristic due to tribo-oxides formed on worn surfaces. However, the wear at 200 °C presents different wear behaviors and characteristics from the one at 400 °C. The wear at 200 °C is a typical oxidative mild wear, but the wear at 400 °C is beyond oxidative mild wear, here called oxidative wear. The characteristics of oxidative mild wear and oxidative wear were clarified.  相似文献   

15.
《Wear》2006,260(9-10):1028-1034
In many machining applications, adhesion of the workpiece to the tool is a major problem. Adhesion may be reduced by changing the microstructure of the tool steel, e.g. by increasing the carbide content. The present work deals with the influence of some microstructural parameters in the adhesive wear of tool steels. The investigations were conducted using six model alloys based on the powder metallurgy high speed steel AISI M4, all of which had the same martensitic matrix composition after heat treatment. The alloys had MC carbide contents which varied between 0 and 25 mol% in 5 mol% increments. Ball-on-disc experiments were carried out in ambient air at room temperature using austenitic stainless steel and aluminum balls as counterfaces. Wear tracks on the disks were characterized using both a scanning electron microscope and an optical profiler. The results show that two main parameters determine the adhesive wear behavior: the carbide content and the distance between carbides.  相似文献   

16.
《Wear》2006,260(4-5):379-386
SiO2, TiO2, and hydroxyapatite (HA) thin films with good biocompatibility were grown on Ti–6Al–4V (coded as TC4) substrate by sol–gel and dip-coating processes from specially formulated sols, followed by annealing at 500 °C The chemical states of some typical elements in the target films were detected by means of X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) and high-resolution scanning electron microscopy (SEM) are applied to characterize the original unworn films. The tribological properties of thin films sliding against an AISI52100 steel ball were evaluated on a reciprocating friction and wear tester. As the result, the target films composed of nano-particles ranging from 30 nm to 100 nm around were obtained. All the sol–gel ceramic films are superior in resisting wear compared with the TC4 substrate. Among all, HA film shows the best resistance while SiO2 film shows the worst wear resistance both under higher (3 N) and lower load (1 N). TiO2 shows good wear resistance under lower load (1 N). SEM observation of the morphologies of worn surfaces indicates that the wear of TC4 is characteristic of abrasive wear. Differently, abrasion, plastic deformation and micro-fracture dominate the wear of ceramic films. The superior friction reduction and wear resistance of HA film is greatly due to the slight plastic deformation of the film. It is supposed that the deformation of the HA film is closely related to the special arrangement of the nano-particles and microstructure. HA film is recommended for clinical application from the point of wear resistance view.  相似文献   

17.
Ziqi Sun  Ling Wu  Meishuan Li  Yanchun Zhou 《Wear》2009,266(9-10):960-967
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on single-phase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5–15 N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53–0.63 against AISI 52100 steel and between 0.51–0.56 against Si3N4 ceramic. We found that wear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10?4 mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.  相似文献   

18.
《Wear》2006,260(7-8):825-831
The vacuum plasma spray (VPS) technique is a useful tool for designing the characteristics of the coatings and, thus, the tribological properties of coated components. In the present paper, the wear properties of iron boride coatings produced by means of VPS technique on AISI 1040 steel samples were evaluated as a function of their microstructural characteristics. One coating type was obtained by using Fe2B pure powder, the other with differentiated FeB + α-Fe blends, with the FeB content increasing and α-Fe content decreasing from the matrix to the surface. Wear tests were performed by means of a tribometer in block-on-ring configuration, without lubricant and in air, by using 40- and 60-N coupling loads and 0.8- and 1.6-m s−1 sliding velocities. On Fe2B coated samples, wear is essentially oxidative until the failure of the coating, the fragments of which cause a third body abrasion. On the FeB + α-Fe coated samples the wear mechanism is mainly oxidative and the coating totally wears out without spalling as a consequence of its graded structure, which succeeds in both improving the adhesion of the coating to the substrate and reducing the residual stress at the coating–substrate interface.  相似文献   

19.
M. Tabur  M. Izciler  F. Gul  I. Karacan 《Wear》2009,266(11-12):1106-1112
In this study, AISI 8620 steel was boronized using the solid state boronizing technique. Processes were carried out at the temperatures of 850, 900 and 950 °C for 2, 4 and 6 h of treatment. Abrasive wear behavior of the samples boronized at different temperatures and treatment durations have been examined. Using boronized and unboronized samples, abrasive tests were conducted using pin on disc test apparatus. 80 and 120 mesh aluminum oxide (Al2O3) abrasive papers were used in the abrasion experiments and the samples were subjected to abrasion under 10, 20 and 30 N loads. Boronized steels exhibited an improvement in abrasive wear resistance reaching up to 500%. Microstructures and wear surfaces of the samples were inspected using SEM microscopy. SEM examinations revealed that the thickness of the boride layer on the steel surfaces changes with changing process durations and temperatures. The presence of boride formed in the borided layer at the surface of the steels were determined by XRD analysis and microhardness values of the iron borides (FeB, Fe2B) formed on the steel surface were found to be over 1600 HV.  相似文献   

20.
In this paper, the Taguchi method and regression analysis have been applied to evaluate the machinability of Hadfield steel with PVD TiAlN- and CVD TiCN/Al2O3-coated carbide inserts under dry milling conditions. Several experiments were conducted using the L18 (2 × 3 × 3) full-factorial design with a mixed orthogonal array on a CNC vertical machining center. Analysis of variance (ANOVA) was used to determine the effects of the machining parameters on surface roughness and flank wear. The cutting tool, cutting speed and feed rate were selected as machining parameters. The analysis results revealed that the feed rate was the dominant factor affecting surface roughness and cutting speed was the dominant factor affecting flank wear. Linear and quadratic regression analyses were applied to predict the outcomes of the experiment. The predicted values and measured values were very close to each other. Confirmation test results showed that the Taguchi method was very successful in the optimization of machining parameters for minimum surface roughness and flank wear in the milling the Hadfield steel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号