首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Matsui  H. Kakishima 《Wear》2006,260(6):669-673
The effect of shot-peening treatment with the particulate MoS2 solid lubricant on the wear resistance of steel in the dry rolling/sliding contact wear tests was investigated. The duplex shot-peening treatment with ceramic balls and the particulate MoS2 solid lubricant provided excellent wear resistance under a severe loading and sliding condition because the uniform and minute surface roughness given by shot-peening treatment with ceramic balls could keep shot-peened MoS2 particles with a low friction coefficient on the sample surface. Furthermore, the sample surface was covered with shot-peened MoS2 particles by a MoS2 layer formed during the rolling/sliding contact wear test.  相似文献   

2.
A numerical contact model is used to study the influence of surface roughness and the pressure distribution on the frictional behaviour in rolling/sliding contacts. Double-crowned roller surfaces are measured and used as input for the contact analysis. The contact pressure distribution is calculated for dry static contacts and the results are compared with friction measurements in a lubricated rolling/sliding contact made with a rough friction test rig. The mean pressure is suggested as a parameter that can be used to predict the influence of surface roughness on the friction coefficient in such contacts. The results show two important properties of the friction coefficient for the friction regime studied in this paper: (1) there is a linear decrease in friction coefficient as a function of the slide-to-roll ratio, and (2) the friction coefficient increases linearly with increasing mean contact pressure up to a maximum limit above which the friction coefficient is constant. The absolute deviation of experimental results from the derived theory is for most cases within 0.005.  相似文献   

3.
The rolling contact fatigue (RCF) life of highly loaded machine components is significantly influenced by the surface roughness features so that there is a continuous effort to design the topography of rubbing surfaces to enhance lubrication efficiency and prolong the operation of machine components. It can be suggested from the recent experimental results that lubricant emitted from shallow micro-dents could effectively lift off the real roughness features and reduce the asperities interactions within rolling/sliding mixed lubricated contacts. Thereby the additional supply of lubricant from surface features could help to reduce the risk of surface damage through the reduction of the interaction of rubbing surfaces during start-up or starvation. However, the introduction of such roughness features into the rubbing surfaces of highly loaded non-conformal contacts should consider not only the effects on lubrication film thickness but also on RCF.That is why this study is focused on the effects of surface texturing on RCF within non-conformal rolling/sliding contacts operated under mixed lubrication conditions. The principal task has been whether possible beneficial effect on film thickness is not accompanied by the reduction in RCF life. Textures with various sizes of micro-dents and their arrangement within the contacts have been considered. It has been found that results obtained with textured surfaces have exhibited no obvious reduction in RCF. Conversely, some increase in RCF using textured surfaces was observed that could be attributed to the positive contribution of micro-dents working as lubricant micro-reservoirs that reduce asperities interactions. Nevertheless, further experiments are necessary to confirm this possible beneficial contribution of surface texturing on RCF.  相似文献   

4.
An on-line and off-line hybrid contact algorithm for modeling wheel/rail contact problems is developed based on the elastic contact formulation. In the hybrid algorithm developed in this investigation, the off-line tabular search is used for predicting the location of tread contact points, while the on-line iterative search is used for predicting flange contact points. By so doing, a computationally efficient procedure is achieved while keeping accurate predictions of contact points for severe contact scenarios such as sharp curve and turnout negotiations. The use of the proposed hybrid algorithm can eliminate the time-consuming on-line iterative search for the second points of contact. Since the location of the second point of contact is pre-computed by the contact geometry analysis, the occurrence of two-point contact can be predicted by using the look-up table at the one-point contact configuration. A flange climb simulation demonstrates that the proposed hybrid contact search algorithm can be effectively used for modeling wheel/rail contacts in the analysis of general multibody railroad vehicle systems. This paper was presented at the 4th Asian Conference on Multibody Dynamics(ACMD2008), Jeju, Korea, August 20–23, 2008. Hiroyuki Sugiyama received his Ph.D. from the University of Illinois at Chicago in 2005. Dr. Sugiyama is currently an Assistant Professor at Tokyo University of Science, Tokyo, Japan. His research interests include the development of computer formulations for contact problems in vehicle systems and the large deformation problems of constrained multibody systems. Kohei Araki received his BS degree in Mechanical Engineering from Osaka City University in 2006. Mr. Araki is currently a Master’s student at Osaka City University, Osaka, Japan. His research interest is in the modeling of wheel/contact problems in railroad vehicle dynamics. Yoshihiro Suda received his Doctoral degree from the University of Tokyo in 1987. Dr. Suda is currently a Professor at the University of Tokyo, Tokyo, Japan. His research interests are in the dynamics of railroad vehicles and automobiles, in-telligent transportation systems (ITS) and personal mobility vehicles. He is currently serving as an Associate Editor of the IMechE Journal of Multi-Body Dynamics.  相似文献   

5.
The effect of shot peening on rolling contact fatigue (RCF) and lubricant film thickness within non-conformal rolling/sliding contacts operated under mixed lubrication conditions was observed in this study. Rolling contact fatigue tests and film thickness measurements were carried out using specimens with modified surface topography by shot peening process using glass beads having diameter between 0.07 and 0.11 mm. It has been shown that the effect of shot peening on RCF has no positive effect even if shot peened surface of the roller exhibited somewhat higher hardness in contrast to the grounded surface. The reduction of RCF may be caused due to asperities interactions because after shot peening the surface roughness of the roller was increased. Film thickness measurements confirmed that the contact is realized actually only between asperity peaks of shot peened ball and smooth disc.Conversely, no negative effect on RCF was observed when the shot peened surface of the roller was polished. The polish of asperity peaks causes the creation of lands and micro-cavities, which may be employed as lubricant micro-reservoirs. From film thickness measurements it has been observed that lubricant emitted by shallow micro-cavities can provide the local increase in lubrication film thickness, which thereby reduces asperities interactions. Similar results were obtained for start-up conditions where the squeeze lubricant enlarges film thickness and reduces surface interactions.From the obtained results, it can be suggested that properly designed surface topography modification could help to increase the efficiency of lubrication films leading to the enhancement of contact fatigue life of non-conformal mixed lubricated rolling/sliding contacts.  相似文献   

6.
In the present study, finite element transient contact and thermal sliding simulation and temperature measurement of dry sliding friction were performed in order to analyse the real contact area and temperature developed in the contact region. Real 3D surface worn topographies were taken into consideration, at macro and intermediate stages. The calculated real contact area has been changing in time and space in the course of sliding. The sliding components were high purity alumina ceramic palettes and 100Cr6 steel with constant accelerated motion. The calculated temperature results are in good agreement with the temperature data measured. Heat partition was changing in time during sliding. The developed algorithm based on incremental FE technique can characterize real processes.  相似文献   

7.
The study of plastic deformation and damage accumulation below the contact surfaces is important in order to understand the dry sliding wear behaviour of aluminum alloys. Experimental evidence exists for the nucleation of voids and microcracks around second phase particles in the material layers adjacent to the contact surface. Propagation of these cracks at a certain depth below the surface may lead to the creation of long, thin plate-like wear debris particles. This work studied the deformation processes during sliding wear by means of metallographic observations of subsurface layers in an Al–7% Si (A356 Al) alloy and by finite element analyses. Specifically, the accumulation of subsurface stresses and strains was investigated, using a coupled structural-thermal finite element model based on the Voce-type exponential stress–strain relationship obtained from the sliding wear tests. Additionally, temperature and strain rate effects were taken into account using a constitutive equation based on Johnson–Cook and Cowper–Symonds models.Accordingly during sliding, the flow stress in subsurface layers increased rapidly and reached a saturation stress after a finite number of sliding contacts. The variation of hydrostatic pressure for different loading conditions was also determined as a function of sliding passes: as the sliding process progressed from the first to the seventh contacts, the hydrostatic pressure at the surface increased from 1150 to 1300 MPa. A total temperature increase of 45 K occurred at the surface after the seventh sliding contact. A debris formation model was proposed in which the presence of a maximum damage gradient at critical depth was considered. The model showed that, with a sliding velocity of 10 m/s, and a normal load of 150 N per unit thickness in mm, the material location where the maximum rate of damage occurred corresponded to a normalized depth (depth/counterface diameter) of 0.060. Increasing the load to 250 N/mm caused an increase in the critical depth of damage (a normalized depth of 0.085). Comparisons with the experimental subsurface crack observations indicate that the proposed damage rate calculations provide a good estimation of the subsurface crack propagation depth.  相似文献   

8.
轮轨滚动接触疲劳现象分析   总被引:16,自引:1,他引:16  
论述轮轨滚动接触疲劳破坏的几种典型现象,定性地分析它们的起因和发展过程。介绍我国部分铁路现场轮轨接触表面的疲劳破坏调查情况,给出由非赫兹滚动接触理论分析计算的我国铁路轮轨接触表面作用力分布情况。计算结果表明我国铁路轮轨接触表面疲劳现象如此严重的主要原因之一是轮轨型面不配匹和轨底坡设置不合理。并论述该领域今后的进一步研究方向。  相似文献   

9.
An investigation into the non-Hertzian, elastic stress history, due to the contact of two rough surfaces is presented. A complex evolution of stress is produced whose magnitude and rate depend strongly upon the roughnesses and speeds of the contacting bodies. The key features of the stress fields are illustrated by plots of stress versus time and horizontal distance, for a range of depths and for various contact conditions. The stresses near the surface are many times higher than in an equivalent smooth contact and the roughness on thecounterface generates a moving stress field which, when sliding is present, greatly increases the number of cycles of stress during each passage of the contact. This may account, in part, for the observation that the rolling fatigue life of hard steels declines more rapidly with sliding speed for rough, than for smooth surfaces and suggests that counterface roughness is especially important in determining the fatigue life.  相似文献   

10.
A method is proposed to determine the change in surface topography during running‐in of rolling contacts. Two types of experiments have been conducted in the present work to study the running‐in of the pure rolling contact situation: repeated moving and general free rolling using a high accuracy measurement setup. The results show that the surfaces run‐in with the proposed repeated moving contact method gives a fast running‐in when compared with the general free rolling contact method. The proposed repeated moving contact method appears to be a good method to study the ideal or pure rolling contact situation because wear, as present in the general free rolling contact method, is avoided. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A refined friction model of sliding contact in boundary/mixed lubrication regime is developed. In addition to the well-known asperity flattening and roughening effects, significant deformation of asperities can be incited by the elastic microwedges on the tool surface. A model of asperity deformation, which includes the effects of smoothing, roughening, and microwedge, is proposed for processes where smooth tool and rough workpiece are used. A finite element formulation incorporating the microwedge effect in the Reynolds equation for lubricant flow is also derived. Numerical results showed that the inclusion of microwedge in the analysis provides a good agreement with the experimental measurements, especially with many interesting phenomena that can be neither explained nor predicted by the other friction models.  相似文献   

12.
Rolling/sliding contact fatigue tests were conducted using a pair of transparent discs containing a hole or a surface crack produced artificially on the disc surface. The crack initiation from the hole or the growth of the surface crack were compared with predictions by numerical analyses based on fracture mechanics. Experiments and analyses showed that Way's hypothesis on pitting should be accepted as a plausible mechanism. The experimental results verified several important theoretical predictions on crack growth under rolling and/or contact conditions.  相似文献   

13.
Silicon nitride (Si3N4) has been used in various rolling contact applications in turbomachinery, automotive and power industry. It is favoured to replace conventional steel due to its low density, low friction, corrosion resistance and good performance under extreme condition. However, a major limitation of its wider application is its high material and machining cost, especially the cost associated with the finishing process. In the present study, a low cost sintered and reaction bonded silicon nitride (SRBSN) is used to study the surface machining effects on its rolling contact performance. Attempt has been made to link the surface strengths of Si3N4 derived from half-rod and C-sphere flexure strength specimens to the rolling contact lifetimes of Si3N4 rod and ball specimens. The rolling contact fatigue tests are carried out on ball-on-rod and modified four ball machines. Three types of surfaces with coarse, fine and conventional finishing conditions are examined. Flexure strength tests on half-rod and C-sphere show an increasing surface strength from specimens with coarse, fine to conventionally machined conditions. During rolling contact fatigue test of as-machined specimens, there are no failures observed on both ball-on-rod and four ball tests after 100 million stress cycles. However, there is a trend of decreasing wear volumes measured on the contact path of rods and balls with coarse, fine and conventional conditions. In four ball test, spall failures are observed on pre-crack specimens. There is a trend of increasing rolling contact fatigue lifetime from pre-cracked specimens with coarse, fine to conventional machining conditions.  相似文献   

14.
An efficient numerical method based on Lobatto quadrature analysis is adopted for a rigorous analysis of temperature in elastohydrodynamic lubrication (EHL) line contacts. Temperature distributions are calculated for maximum Hertzian pressures and rolling speeds varying between 0.5 to 2.0 GPa and 1 to 30 m/s, respectively. Significant mid-film temperature and surface temperature increases have been observed at higher rolling speeds with an increase in loads and slip ratios. Results have been compared with the results of Manton, S. M., O'Donoghue, J. P. and Cameron, A., Temperatures at lubricated rolling/sliding contacts. Proceedings of the Institution of Mechanical Engineers, 1967–68, 182(417), 813–824. An empirical equation is presented for the prediction of non-dimensional maximum mid-film temperature in the contact zone in terms of the dimensionless thermal loading parameter Q, dimensionless load W and slip S, as:
  相似文献   

15.
The dependence of the contact characteristics and sliding friction coefficient on the density of the arrangement of contact spots is studied. To this end, the periodic contact problem of a system of asperities sliding on a viscoelastic base is considered. The main mechanism of the mutual effect of contact spots in the model in question manifests itself in the incomplete restoration of deformation on the free surface, with fairly dense arrangement of spots due to the imperfect elasticity of the base. The dependence is obtained of the friction coefficient on the spacing between asperities at various levels of effective loads and sliding velocities.  相似文献   

16.
The industrial steel tube in the cold rolling processes under liquid lubrication was simulated in a recovered cutting machine to study the tribological performances of an emulsion with four different concentrations of an emulsifier. The test machine was equipped with a device to measure the electrical contact resistance (ECR) between the rubbing surfaces of a steel tube and a roller. The ECR readings were useful to identify the existence of a surface absorption layer (a boundary layer film) between the contact surfaces and thus to realize the tribological effects. The tribological properties, including the friction coefficient, the electrical contact resistance, the wear loss of the tube and the worn surface area, were evaluated at these emulsifier concentrations. The displacement energy and the spraying coefficients for these emulsifier concentrations were applicable to interpret their relationships with the wear loss of the steel tube. The measures of the ECR are found to have a tendency more related to the values of the friction coefficient. Stribeck curves were also established for four emulsions; they are useful for assisting in the explanation for why a high friction coefficient in some cases does not necessarily produce a high wear loss. They were also provided to investigate the effects of the emulsifier concentrations on the friction coefficients at various lubrication stages. The emulsion with a dilute ratio of 50:1 proved to be the optimum choice of the four emulsifier concentrations because it leads to the lowest friction coefficient, the smallest wear loss and the worn surface as to the test time of 60 minutes.  相似文献   

17.
Cam/tappet wear is one of the most difficult reliability and durability problems to predict during the development of a prototype engine valve‐train system. In the present study, the cam/tappet surface temperature was measured and calculated to determine the effect of surface temperature on the lubricating conditions at a cam/tappet contact. The measurement method, sometimes called the dynamic thermocouple technique, was based on the Seebeck effect: by using different materials for the cam and tappet, the cam/tappet contact point becomes the hot junction of a ‘thermocouple’. The cam/tappet contact surface temperature can therefore be measured continuously. The measured temperature results show good agreement with predictions. Temperature spikes, however, were not found in the test using new oil, but were shown by the theoretical model. Such results indicate that the cam/tappet interface operates in effective lubricating conditions, even when the oil temperature is relatively high. Further research with degraded oil supplied at high temperature is needed for a thorough understanding of abnormal cam wear.  相似文献   

18.
Tribocarbonisation of a fully formulated synthetic engine oil, an API SJ/SAE 5W‐30 containing an organic molybdenum friction modifier, was investigated in an Optimal SRV® tribotester, with a Mo‐coated piston ring and a cast iron cylinder bore tribopair in lubricated sliding contact and under stepwise heating conditions. The friction characteristics were determined by the friction coefficient curve which showed that two local minimum values occurred as the temperature increased stepwise. The local minimum friction coefficient at the lower temperature of 290°C was the result of the formation of MoS2 and MoO3, tribochemically generated by MoDTC and ZDTP. For the other local minimum friction coefficient at the higher temperature of 400°C, FT‐IR and Raman spectroscopic examinations of the worn tracks on the cylinder bore samples indicated that tribopyrolysis of the oil components and simultaneous polycondensation into carbonaceous species had occurred. Detailed Raman analyses showed that the carbonaceous species included a disordered phase and an ordered phase characterised, respectively, by the D‐line (1370 cm−1) and G‐line (1580 cm−1). The peak positions and sizes of the graphite crystallites involved varied according to temperature, and were related to the specific points on the friction coefficient versus temperature curve. Tribochemistry could enhance pyrolysis of the oil and facilitate the production of the carbonaceous species and growth of the graphite crystallites.  相似文献   

19.
Hertz理论与有限元法分析轮轨接触疲劳的差异性研究   总被引:6,自引:0,他引:6  
采用Hertz理论和有限元分析软件ANSYS,对钢轨表面存在微裂纹的轮轨接触疲劳问题进行研究,在不同轴重和运行状态下,获得不同位置的裂纹尖端应力强度因子。结果表明,随着轴重的增加,应力强度因子KI增加,而KII的变化趋势因车轮运行状态的不同而不尽相同。摩擦力的存在,使得KI、KII明显增加,且明显改变KII的变化趋势;在无摩擦力时,KII所占KI的比例约为6%,纯滚动时,KII所占KI的比例达到将近20%,全滑动时,KII所占KI的比例接近50%,因此,对钢轨进行疲劳断裂机理分析时,KII明显不可忽略。由于Hertz理论不考虑材料的塑性和轮轨间的摩擦力,使得Hertz理论分析轮轨接触疲劳时有适用范围小、计算结果偏大、误差累计等缺点,而有限元法是解决复杂轮轨接触疲劳问题更有效的方法。  相似文献   

20.
K. Elalem  D. Y. Li   《Wear》2001,250(1-12):59-65
The dry sand/rubber-wheel abrasion tester is widely used to evaluate the low-stress abrasion resistance of materials for the mining/mineral processing industry particularly for the oil sand mining industry. Since wear loss is usually proportional to the applied load, this test is often performed under a fixed load at a fixed sliding speed to rank materials. However, inaccurate or misleading information might be generated under an inadequate load. It has been observed that D2 tool steel exhibits very different responses to variations in the applied load. Above a certain load level, further increase in the applied load may lead to a decrease in wear loss of D2 steel. In order to understand this phenomenon, computer simulation was performed to investigate wear responses of several engineering materials, including D2 tool steel, stainless steel, Al 6061 and Cu 110, to variations in applied load under the dry sand/rubber-wheel abrasion condition. It was demonstrated that the decrease in wear loss of D2 tool steel with an increase in the applied load was attributed to failure of the abrasive sand. Wear losses of the materials with respect to the sliding speed were also investigated. The prediction from the simulation was compared to experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号