首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
Machining of hard materials has become a great challenge for several decades. One of the problems in this machining process is early tool wear, and this affects the machinability of hard materials. In order to increase machinability, cutting tools are widely coated with nanostructured physical vapor deposition hard coatings. The main characteristics of such advanced hard coatings are high microhardness and toughness as well as good adhesion to the substrate. In this paper, the influence of hard coatings (nanolayer AlTiN/TiN, multilayer nanocomposite TiAlSiN/TiSiN/TiAlN, and commercially available TiN/TiAlN) and cutting parameters (cutting speed, feed rate, and depth of cut) on cutting forces and surface roughness were investigated during face milling of AISI O2 cold work tool steel (~61 HRC). The experiments were conducted based on 313 factorial design by response surface methodology, and response surface equations of cutting forces and surface roughness were obtained. In addition, the cutting forces obtained with the coated and uncoated tools were compared. The results showed that the interaction of coating type and depth of cut affects surface roughness. The hard coating type has no significant effect on cutting forces, while the cutting force F z is approximately two times higher in the case of uncoated tool.  相似文献   

2.
研究奥氏体高锰钢切削过程中TiN涂层硬质合金刀具的磨损、破损机制,测量了切削温度并得出后刀面磨损量与 切削时间和切削速度的关系曲线,以及刀具前、后刀面显微磨损、破损形貌和化学变化。结果表明,TiN涂层硬质合金刀 具切削奥氏体高锰钢时耐磨性优于单一硬质合金刀具,且适于低速切削(小于30m/min)。  相似文献   

3.
Tool wear is one of the most important problems in cutting titanium alloys due to the high-cutting temperature and strong adhesion. Recently, the high-speed machining process has become a topic of great interest for titanium alloys, not only because it increases material removal rates, but also because it can positively influence the properties of finished workpiece. However, the process may result in the increase of cutting force and cutting temperature which will accelerate tool wear. In this paper, end milling experiments of Ti-6Al-4V alloy were conducted at high speeds using both uncoated and coated carbide tools. The obtained results show that the cutting force increases significantly at higher cutting speed whether the cutter is uncoated carbide or TiN/TiAlN physical vapor deposition (PVD)-coated carbide. For uncoated carbide tools, the mean flank temperature is almost constant at higher cutting speed, and no obvious abrasion wear or fatigue can be observed. However, for TiN/TiAlN PVD-coated carbide tools, the mean flank temperature always increases as the increase of cutting speed, and serious abrasion wear can be observed. In conclusion, the cutting performance of uncoated inserts is relatively better than TiN/TiAlN PVD-coated inserts at a higher cutting speed.  相似文献   

4.
The coating material of a tool directly affects the efficiency and cost of machining malleable cast iron.However,the machining adaptability of various coating materials to malleable cast iron has been insufficiently researched.In this paper,turning tests were conducted on cemented carbide tools with different coatings(a thick TiN/TiAlN coating,a thin TiN/TiAlN coating,and a nanocomposite(nc)TiAlSiN coating).All coatings were applied by physical vapor deposi-tion.In a comparative study of chip morphology,cutting force,cutting temperature,specific cutting energy,tool wear,and surface roughness,this study analyzed the cutting characteristics of the tools coated with various materials,and established the relationship between the cutting parameters and machining objectives.The results showed that in malleable cast iron machining,the coating material significantly affects the cutting performance of the tool.Among the three tools,the nc-TiAlSiN-coated carbide tool achieved the minimum cutting force,the lowest cutting tempera-ture,least tool wear,longest tool life,and best surface quality.Moreover,in comparisons between cemented-carbide and compacted-graphite cast iron machined under the same conditions,the wear mechanism of the coated tools was found to depend on the cast iron being machined.Therefore,the performance requirements of a tool depend on multiple factors,and selecting an appropriately coated tool for a particular cast iron material is essential.  相似文献   

5.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

6.
Machining of aerospace materials is one of the major challenges of modern manufacturing. Application of nano-multilayered AlTiN/MexN PVD coatings (where Mex is a transition metal of V-VI groups of periodic table) to cemented carbide tooling results in a significant tool life improvement under conditions of cutting hard to machine alloys such as Ni-based Inconel 718 superalloy and Ti-based TiAl6V4 alloy. Microhardness and coefficient of friction of the coatings were measured during this experiment. Investigations of the coated tool life, wear behavior, chip formation (chip type and undersurface morphology) for cutting tools with nano-multilayered PVD coating were also performed. Morphology of worn tools has been studied using SEM and EDX. This study will show that metallurgical design of the nano-multilayered coating should be tailored to its application. To achieve better tool life when machining Inconel 781, adaptive nano-multilayered AlTiN/MoN coating is recommended, whereas a AlTiN/VN coating is better suited to machining TiAl6V4 alloy. A driving force behind selecting these coatings was a noticeably lower coefficient of friction at elevated temperatures.  相似文献   

7.
This study presents an assessment of the performance of four cutting tool in the machining of medium hardened HSS: polycrystalline c-BN (c-BN+TiN), TiN coated polycrystalline c-BN (c-BN+TiN), ceramic mixed alumina (Al2O3+TiC), and coated tungsten carbide (TiN coated over a multilayer coating (TiC/TiCN/Al2O3)). The Al2O3+TiC and the coated carbide tools can outperform both types of c-BN at high cutting speeds. Raman and SEM mapping revealed an alumina tribo-layer that protects the surface of the Al2O3+TiC cutting tool. The high chemical and thermal stability of Al2O3 tribo-films protects the tool substrate because it prevents the heat generated at the tool/chip interface from entering the tool core.  相似文献   

8.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

9.
采用中频磁控溅射和电弧离子镀两种方法组合在硬质合金基体上沉积ZrN/TiN复合涂层,采用切削试验来研究ZrN/TiN涂层对硬质合金刀具切削性能的影响。结果表明:ZrN/TiN复合涂层提高了硬质合金刀具的硬度,涂层刀具的显微硬度受基体硬度的影响,基体YG6、YT14涂层后的显微硬度分别可达2300HV,2500HV;使涂层刀具切削力的降低了20%;提高了涂层刀具的耐磨损能力。  相似文献   

10.
针对涂层材料改善刀具切削性能这一问题,本文采用常速试验和高速试验的方法,对比分析了七种涂层材料对铣刀切削性能的改善程度。试验结果表明:涂层性能优越与否与切削速度有很大关系,AlCrN和TiAlCN涂层铣刀更适合高速切削;而AlTiN涂层铣刀不适合高速切削;TiN涂层铣刀无论在常速和高速切削时性能均表现不佳,高速切削时磨损相对更快;CrN+TiN复合涂层抗氧化能力较好,但抗磨能力相对较差。  相似文献   

11.
PVD coated (TiN/TiCN/TiN, TiAIN and TiZrN) and uncoated carbide tools were used to machine a nickel base, C-263, alloy at high-speed conditions. The test results show that the multiple TiN/TiCN/TiN coated inserts gave the best overall performance in terms of tool life when machining at cutting speeds up to 68 m min and at depths of cut of 0.635 mm, 1.25 mm and 2.54 mm. All the tool grades tested gave fairly uniform surface roughness (Ra) values, below the rejection criterion, at lower speed conditions. The TiZrN coated inserts gave the lowest component forces when machining at lower cutting speed conditions while the TiA/N coated inserts gave the lowest component forces when machining at a higher speed of 68 m min?1 and depth of cut of 1.25 mm. This tool performance can generally be attributed to the difference in their ability to provide effective lubrication at the cutting zone, thermal conductivity of the coating materials as well as the cutting conditions employed. The uncoated carbide tools generally encountered more severe crater wear, chipping/fracture of the cutting edges as well as pronounced notching during machining. This is due to their inability to provide effective lubrication at the cutting zone, thus impeding the gliding motion of the chips along the rake and flank faces respectively, thus accelerating flank wear. Analysis of the worn tool edges revealed adhesion of a compact “fin-shaped” structure of hardened burrs with saw-tooth like edges. This generally alters the initial geometry of the cutting edge, consequently resulting to poor surface finish with prolonged machining.  相似文献   

12.
The present work deals with a comparative study on flank wear, surface roughness, tool life, volume of chip removal and economical feasibility in turning high carbon high chromium AISI D2 steel with multilayer MTCVD coated [TiN/TiCN/Al2O3/TiN] and uncoated carbide inserts under dry cutting environment. Higher micro hardness of TiN coated carbide samples (1880 HV) compared to uncoated carbide (1430 HV) is observed and depicts better resistance against abrasion. The low erosion rate was observed in TiN coated insert compared to uncoated carbide. The tool life of TiN coated insert is found to be approximately 30 times higher than the uncoated carbide insert under similar cutting conditions and produced lower surface roughness compared to uncoated carbide insert. The dominant wear mechanism was found to be abrasion and progression of wear was steady using multilayer TiN coated carbide insert. The developed regression model shows high determination coefficient i.e. R2 = 0.977 for flank wear and 0.94 for surface roughness and accurately explains the relationship between the responses and the independent variable. The machining cost per part for uncoated carbide insert is found to be 10.5 times higher than the multilayer TiN coated carbide inserts. This indicates 90.5% cost savings using multilayer TiN coated inserts by the adoption of a cutting speed of 200 m/min coupled with a tool feed rate of 0.21 mm/rev and depth of cut of 0.4 mm. Thus, TiN coated carbide tools are capable of reducing machining costs and performs better than uncoated carbide inserts in machining D2 steel.  相似文献   

13.
MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered coupled with multi-arc ion plating techniques. The thickness, micro-hardness, and coating/substrate adhesion strength of the coatings were tested. Surface morphologies of the composite coatings, as well as wear features, were investigated by scanning electron microscopy. Dry machining tests on hardened steel were carried out with the coated tool and uncoated YT15 tool. The variation of cutting forces for 45# hardened steel was tested by the Kistler force tester. The result shows that the cutting forces of coated tool were decreased by 25–30%, and flank wear resistance was improved by 30–35% in comparison with the uncoated YT15 tool. Through the analysis of cutting force distribution theory, the lower mean shear stress on the MoS2/Zr-coated tool face leads to the decrease of cutting force and increase of tool wear resistance.  相似文献   

14.
Multilayer-coated tool systems have been effective in controlling mechanical and thermal loads, especially in high-speed cutting regime. In this study, cutting performance of tungsten carbide tools with restricted contact length and multilayer chemical vapour deposition deposited coatings, TiCN/Al2O3/TiN (in series) and TiCN/Al2O3–TiN (functionally graded), was investigated in dry turning. Cutting tests were conducted on low carbon alloy steel AISI/SAE 4140 over a wide range of cutting speeds between 200 and 879?m/min. Results including cutting forces, chip compression ratio, shear angle, contact area inclusive of sticking and sliding phenomena and tool flank wear are presented. In particular, prediction of heat partition into the cutting tool inserts was carried out using a combination of experimental tests and the finite element method. The results show that coating layouts and cutting tool edge geometry can significantly affect heat distribution into the cutting tool. The paper clearly shows the role and potential benefits of applying different top coats on the rake and flank faces with regards contact phenomenon, impact on thermal shielding and tool wear. An appropriate coating layout selection is crucial in controlling tool wear, especially in high-speed machining.  相似文献   

15.
Elliptical vibration cutting of hardened die steel with coated carbide tools is examined in this research in order to achieve low-cost high-precision machining. Diamond coated tools are applied because of superior hardness of their polycrystalline diamond coating and its low manufacturing cost. TiN coated tools are also tested, since they are widely used for conventional machining of steels. Machinability of hardened die steel by the elliptical vibration cutting with coated carbide tools is discussed in three aspects in this study, i.e. transferability of cutting edge profile to cut surface, cutting force, and tool life. The transferability is evaluated quantitatively by calculating correlation coefficients of measured roughness profiles. It is clarified that the diamond coated tools have high transferability which leads to diffraction of light on the surface machined at micro-scale pick feed. Total cutting forces including ploughing components are measured at various feed rates, and then shearing components and ploughing components are separated utilizing linear regression. The measured results indicate, for example, that the all forces become considerably smaller only when elliptical vibration is applied to the TiN coated tool without cutting fluid. It is also found that this considerable reduction of forces interestingly corresponds to higher friction coefficient, which is identified from the ploughing components. Tool life tests are carried out by various machining methods, i.e. elliptical vibration/ordinary wet/dry cutting with diamond/TiN coated tools. The result shows, for example, that the flank wear is smallest in the wet elliptical vibration cutting with the diamond coated tool.  相似文献   

16.
针对SiC颗粒硬度高,切削Al/SiCp复合材料时刀具磨损剧烈,本文提出用具有较高硬度、韧性及良好抗磨损能力的WC-7Co制备纳米硬质合金刀具,并对Al/SiCp复合材料进行了切削实验。研究了纳米硬质合金刀具磨损机理和Al/SiCp复合材料的切屑去除机理,以及刀尖处后刀面磨损值。研究认为,纳米硬质合金刀具磨损的机理为SiC颗粒的微切削作用引起的磨料磨损,及SiC颗粒对刀尖刃口的高频、断续冲击引起的微崩刃及微破损;Al/SiCp复合材料的切削实质是断续切削;去除机理为切屑的崩碎去除;纳米硬质合金后刀面磨损值较普通硬质合金小30%~50%。实验表明,纳米硬质合金较普通硬质合金更适于加工Al/SiCp复合材料。  相似文献   

17.
通过多弧离子镀沉积技术制备了TiN和TiVN涂层,对比了两种涂层在不同工况下的摩擦磨损性能和切削性能,并指出影响刀具涂层服役性能的主要因素。结果表明,V元素掺杂有效提高了TiN涂层的硬度和结合力、减小了TiN涂层的摩擦因数和低温下的磨损率,但V容易氧化的特性导致500 ℃及以上温度TiVN涂层产生较高的磨损率。切削测试表明,在麻花钻的主切削刃和横刃区域两种涂层发生明显的剥落,而在后刀面涂层未发生明显剥落,TiVN涂层较高的膜基结合强度和耐磨性能使得它对刀具的防护效果更佳;刀具涂层的服役性能与其耐磨性能和膜基结合强度有关,刀具的主切削刃和横刃区域对涂层的耐磨性能和膜基结合强度有着苛刻的要求,且切削刃尖端温度较高,对涂层的高温耐磨性能和膜基结合强度要求也高。  相似文献   

18.
This paper investigates the cutting performance of a tungsten carbide end mill with hard coating and a sulfurous boric acid ester cutting fluid in milling A6061P-T651 aluminum alloy. The experiments were conducted to compare the milling force responses and flank wear under various cutting conditions. The results indicate that adding sulfurous boric acid ester cutting fluid decreases tool wear by 12.5% for hard coating tungsten carbide end mills and decreases the milling force by 10%. Besides, the average values of side and end flank wear of TiAlN-surface multilayer end mills can be decreased 38.7% and 68.7% respectively compared with uncoated and dry end mills.  相似文献   

19.
In this paper, the authors introduce the methodology of combined studies on cutting edge preparation and tool performance testing. Five main fields of research on cutting edge preparation are identified in this study of cutting edge preparation while cutting edge microgeometry consists of data associated with tool edge and rake face. Uncoated and TiN coated mixed oxide ceramics inserts have been tested concerning their microgeometry and wear resistance and there is presented a sequence of measuring to identify cutting edge preparation and properties of coating. Authors propose the sequence which considers cutting edge preparation as a factor controlling performance of cutting edge in hard turning operations. Four steps in the sequence of performance testing include measurements with effects of wear criterion and machining time. Measured results show that combined effects of both preparation and coating reduce considerably friction forces in scratch tests and there is very negligible change of microhardness of uncoated and coated ceramics. Relationships between cutting edge microgeometry and acceptable machined surface roughness which results from the sequence in tool performance testing have been identified. Finally, tool performance indices are based on units which characterize machined surface roughness, tool edge wear and forces when hard turning.  相似文献   

20.
Hard turning with multilayer coated carbide tool has several benefits over grinding process such as, reduction of processing costs, increased productivities and improved material properties. The objective was to establish a correlation between cutting parameters such as cutting speed, feed rate and depth of cut with machining force, power, specific cutting force, tool wear and surface roughness on work piece. In the present study, performance of multilayer hard coatings (TiC/TiCN/Al2O3) on cemented carbide substrate using chemical vapor deposition (CVD) for machining of hardened AISI 4340 steel was evaluated. An attempt has been made to analyze the effects of process parameters on machinability aspects using Taguchi technique. Response surface plots are generated for the study of interaction effects of cutting conditions on machinability factors. The correlations were established by multiple linear regression models. The linear regression models were validated using confirmation tests. The analysis of the result revealed that, the optimal combination of low feed rate and low depth of cut with high cutting speed is beneficial for reducing machining force. Higher values of feed rates are necessary to minimize the specific cutting force. The machining power and cutting tool wear increases almost linearly with increase in cutting speed and feed rate. The combination of low feed rate and high cutting speed is necessary for minimizing the surface roughness. Abrasion was the principle wear mechanism observed at all the cutting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号