首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermoelectric properties of the Zintl compound YbZn2Sb2 with isoelectronic substitution of Zn by Mn in the anionic (Zn2Sb2)2− framework have been studied. The p-type YbZn2−x Mn x Sb2 (0.0 ≤ x ≤ 0.4) samples were prepared via melting followed by annealing and hot-pressing. Thermoelectric property measurement showed that the Mn substitution effectively lowered the thermal conductivity for all the samples, while it significantly increased the Seebeck coefficient for x < 0.2. As a result, a dimensionless figure of merit ZT of approximately 0.61 to 0.65 was attained at 726 K for x = 0.05 to 0.15, compared with the ZT of ~0.48 in the unsubstituted YbZn2Sb2.  相似文献   

2.
    
Understanding transport in Zintl compounds is important due to their unusual chemistry, structural complexity, and potential for good thermoelectric performance. Resistivity measurements indicate that undoped Ca5Al2Sb6 is a charge‐balanced semiconductor with a bandgap of 0.5 eV, consistent with Zintl–Klemm charge counting rules. Substituting divalent calcium with monovalent sodium leads to the formation of free holes, and a transition from insulating to metallic electronic behavior is observed. Seebeck measurements yield a hole mass of ~2me, consistent with a structure containing both ionic and covalent bonding. The structural complexity of Zintl compounds is implicated in their unusually low thermal conductivity values. Indeed, Ca5Al2Sb6 possesses an extremely low lattice thermal conductivity (0.6 W mK?1 at 850 K), which approaches the minimum thermal conductivity limit at high temperature. A single parabolic band model is developed and predicts that Ca4.75Na0.25Al2Sb6 possesses a near‐optimal carrier concentration for thermoelectric power generation. A maximum zT > 0.6 is obtained at 1000 K.Beyond thermoelectric applications, the semiconductor Ca5Al2Sb6 possesses a 1D covalent structure which should be amenable to interesting magnetic interactions when appropriately doped.  相似文献   

3.
    
The high concentration of grain boundaries provided by nanostructuring is expected to lower the thermal conductivity of thermoelectric materials, which favors an increase in their thermoelectric figure‐of‐merit, ZT. A novel chemical alloying method has been used for the synthesis of nanoengineered‐skutterudite CoSb3. The CoSb3 powders were annealed for different durations to obtain a set of samples with different particle sizes. The samples were then compacted into pellets by uniaxial pressing under various conditions and used for the thermoelectric characterization. The transport properties were investigated by measuring the Seebeck coefficient and the electrical and thermal conductivities in the temperature range 300 K to 650 K. A substantial reduction in the thermal conductivity of CoSb3 was observed with decreasing grain size in the nanometer region. For an average grain size of 140 nm, the thermal conductivity was reduced by almost an order of magnitude compared to that of a single crystalline or highly annealed polycrystalline material. The highest ZT value obtained was 0.17 at 611 K for a sample with an average grain size of 220 nm. The observed decrease in the thermal conductivity with decreasing grain size is quantified using a model that combines the macroscopic effective medium approaches with the concept of the Kapitza resistance. The compacted samples exhibit Kapitza resistances typical of semiconductors and comparable to those of Si–Ge alloys.  相似文献   

4.
The time it takes for new thermoelectric materials to make the transition from first announcement in peer-reviewed publications to commercialization is undesirably long. As a result, universities, laboratories, government agencies, commercial users, and venture funding providers throughout the world have not supported research in the field to the level that would be expected for such an otherwise promising technology. This delay also has led to some misdirection of research efforts and a lack of availability of dependable long-term sponsorship commitments to research in the field. From the perspective of commercial users, this presentation discusses the challenges that the thermoelectric material research community faces in creating materials of commercial value. These challenges are broken down into objectives for both the traditional research activities related to improving ZT and those efforts needed to satisfy other, less recognized requirements which, if unaddressed, can significantly impede or even prevent commercialization. The ZT thresholds that enable much larger markets are presented for power generation, cooling, heating, and temperature control materials. Other important considerations, including semiconductor to metal interface (metallization) properties, material stability and constituent requirements, and costs and environmental-impact-related requirements are discussed. At the system level, factors that impede material development are identified, including challenges arising from a lack of property measurement repeatability among different organizations. Approaches and results are compared with that of the more heavily funded and rapidly developing photovoltaic field. The presentation concludes with recommendations for measures to accelerate thermoelectric material commercialization. International Conference on Thermoelectrics (August 3–7, 2008, Corvallis, Oregon, USA).  相似文献   

5.
    
Complex multinary compounds (ternary, quaternary, and higher) offer countless opportunities for discovering new semiconductors for applications such as photovoltaics and thermoelectrics. However, controlling doping has been a major challenge in complex semiconductors as there are many possibilities for charged intrinsic defects (e.g., vacancies, interstitials, antisite defects) whose energy depends on competing impurity phases. Even in compounds with no apparent deviation from a stoichiometric nominal composition, such defects commonly lead to free carrier concentrations in excess of 1020 cm?3. Nevertheless, by slightly altering the nominal composition, these defect concentrations can be tuned with small variation of the chemical potentials (composition) of each element. While the variation of chemical composition is undetectable, it is shown that the changes can be inferred by mapping (in nominal composition space) the boundaries where different competing impurity phases form. In the inexpensive Zintl compound Ca9Zn4+x Sb9, the carrier concentrations can be finely tuned within three different three‐phase regions by altering the nominal composition (x = 0.2–0.8), enabling the doubling of thermoelectric performance (zT). Because of the low thermal conductivity, the zT can reach as high as 1.1 at 875 K, which is one of the highest among the earth abundant p‐type thermoelectrics with no ion conducting.  相似文献   

6.
Zintl相化合物满足“电子晶体-声子玻璃”特征,能够通过化学掺杂和结构修饰来提高其热电性能,是理想的热电材料研究对象。阐明了热电材料性能优化的Zintl结构化学原理,介绍了Zintl结构化学在高性能热电材料研究中的应用,指出利用Zintl结构化学原理寻找高性能热电材料是今后热电材料研究的重要方向。  相似文献   

7.
Thermoelectric properties of Zn-substituted magnetite were investigated experimentally. Since Zn is incorporated in the A-site of magnetite for 0 ≤ x ≤ 0.2 in Zn x Fe3−x O4−δ , electrical resistivity remained constant in this region and the thermoelectric power factor (PF) increased with Zn content. At x = 0.2, it attained 1.66 μW/K2 cm at 700°C. Above x = 0.2, where Zn began to enter the B-site, the PF decreased with x.  相似文献   

8.
    
A sequential nucleation and growth process has been developed to construct complex nanostructured films step‐by‐step from aqueous solutions, as reported by Liu, Voigt, and co‐workers on p. 335. This method can be applied to a wide range of materials, and can be combined with top–down techniques to create spatially resolved micropatterns. The cover figure shows images of oriented nanowires, nanoneedles, nanotubes, nanoplates and stacked columns, wagon‐wheels, hierarchical films based on wagon‐wheels, hierarchically ordered mesophase silicate, and micropatterned flower‐like structures. Nanostructured films with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy/chemical conversions. Low‐temperature, aqueous chemical routes have been widely investigated for the synthesis of continuous films, and arrays of oriented nanorods and nanotubes. More recently, aqueous‐phase routes have been used to produce films composed of more complex crystal structures. In this paper, we discuss recent progress in the synthesis of complex nanostructures through sequential nucleation and growth processes. We first review the use of multistage, seeded‐growth methods to synthesize a wide range of nanostructures, including oriented nanowires, nanotubes, and nanoneedles, as well as laminated films, columns, and multilayer heterostructures. We then describe more recent work on the application of sequential nucleation and growth to the systematic assembly of large arrays of hierarchical, complex, oriented, and ordered crystal architectures. The multistage aqueous chemical route is shown to be applicable to several technologically important materials, and therefore may play a key role in advancing complex nanomaterials into applications.  相似文献   

9.
    
Nanostructured films with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy/chemical conversions. Low‐temperature, aqueous chemical routes have been widely investigated for the synthesis of continuous films, and arrays of oriented nanorods and nanotubes. More recently, aqueous‐phase routes have been used to produce films composed of more complex crystal structures. In this paper, we discuss recent progress in the synthesis of complex nanostructures through sequential nucleation and growth processes. We first review the use of multistage, seeded‐growth methods to synthesize a wide range of nanostructures, including oriented nanowires, nanotubes, and nanoneedles, as well as laminated films, columns, and multilayer heterostructures. We then describe more recent work on the application of sequential nucleation and growth to the systematic assembly of large arrays of hierarchical, complex, oriented, and ordered crystal architectures. The multistage aqueous chemical route is shown to be applicable to several technologically important materials, and therefore may play a key role in advancing complex nanomaterials into applications.  相似文献   

10.
Although the thermoelectric performance of PbTe-based materials, processed by hot-pressing, has recently been improved, there are concerns about its thermal stability. On the other hand, during the process of melt crystal growth the material is formed in a quasi-equilibrium condition, which results in homogeneous solid structure in a lower-energy state and, consequently, more thermally stable and mechanically robust. To test the thermal stability of the melt-grown crystal, a Tl-doped PbTe0.85 Se0.15 ingot has been grown from the melt by directional solidification. Four adjacent disc-shape samples were sliced perpendicular to the growth axis from the grown boule. The thermoelectric characterizations together with microstructure examination and mechanical hardness measurements were performed on each of the three as-grown samples as well as on the fourth sample after it has been annealed at 455 °C for 570 h. The characterization results, showing that the annealing has essentially no effects on the thermoelectric properties, metallurgical microstructure as well as mechanical hardness of the annealed sample, have demonstrated that structurally homogeneous materials processed by melt growth are more suitable than those processed by other methods, such as hot press or quench-annealing, for long-term thermoelectric applications at elevated temperatures.  相似文献   

11.
    
This study reports on a new solution phase synthesis leading to cobalt and manganese doped ZnO which have been theoretically predicted ferromagnetic at room temperature. The solvothermal synthesis involving the reaction of zinc and cobalt acetate or manganese oleate with benzyl alcohol leads to pure inorganic nanoparticles that are diluted magnetic semiconductors. The addition of an inert solvent, that is used in order to control the amount of benzyl alcohol, drastically influences the particles morphology and strongly affects the magnetic behaviors. Cobalt doped particles are paramagnetic or ferromagnetic depending on the synthesis conditions. In order to exclude the formation of secondary phases and/or metal clusters and to understand the role of the solvent on the magnetic properties, the local structure of Co2+ and Mn2+ in the wurtzite ZnO matrix were characterized by XRD, UV‐visible diffuse reflectance and electron paramagnetic resonance.  相似文献   

12.
This report reviews several existing and potential automotive applications of thermoelectric technology. Material and device issues related to automotive applications are discussed. Challenges for automotive thermoelectric applications are highlighted.  相似文献   

13.
Nanocrystalline Bi0.85Sb0.15 powders were prepared by a novel mechanical alloying method. The bulk samples were formed by applying a pressure of 6 GPa at different pressing temperatures and times. Electrical conductivity, Seebeck coefficients, and thermal conductivity were measured in the temperature range 80–300 K. The Seebeck coefficient reaches a maximum value of −173 μV/K at 150 K. The largest figure of merit, 3.46 × 10−3 K−1, achieved in this experiment is 50% higher than that of its single-crystal counterpart at 200 K.  相似文献   

14.
    
Chemical deposition of nanocrystalline PbS, CdS, and ZnS at the air/solution interface in the absence and presence of a polydiacetylene (PDA) Langmuir film is investigated in situ using grazing incidence X‐ray diffraction. In all cases, it is found that PDA has a pronounced effect on the incipient semiconductor nanocrystals (NCs). In the presence of PDA, PbS NCs showed a <111> orientation in addition to the commonly obtained <100> growth direction of the PbS rock salt structure while CdS and ZnS NCs crystallized in the zinc blende polymorph with a predominant <100> orientation. ZnS NCs were obtained only in the presence of PDA at the air/solution interface.  相似文献   

15.
The scientific work worldwide on nanostructured materials is extensive as well as the work on the applications of nanostructured materials. We will review quasi two-, one- and zero-dimensional solid and soft materials and their applications. We will restrict ourselves to a few examples from partly fundamental aspects and partly from application aspects. We will start with trapping of excitons in semiconductor nanostructures. The subjects are: physical realizations, phase diagrams, traps, local density approximations, and mesoscopic condensates. From these fundamental questions in solid nanomaterials we will move to trapping of molecules in water using nanostructured electrodes. We will also discuss how to manipulate water (create vortices) by nanostructure materials.The second part deals with nanorods (nano-wires). Particularly we will exemplify with ZnO nanorods. The reason for this is that ZnO has: a very strong excitons binding energy (60 meV) and strong photon-excitons coupling energy, a strong tendency to create nanostructures, and properties which make the material of interest for both optoelectronics and for medical applications. We start with the growth of crystalline ZnO nanorods on different substrates, both crystalline (silicon, silicon carbide, sapphire, etc) and amorphous substrates (silicon dioxide, plastic materials, etc) for temperatures from 50 °C up to 900 °C. The optical properties and crystalline properties of the nanorods will be analyzed. Applications from optoelectronics (lasers, LEDs, lamps, and detectors) are analyzed and also medical applications like photodynamic cancer therapy are taken up.The third part deals with nano-particles in ZnO for sun screening. Skin cancer due to the exposure from the sun can be prevented by ZnO particles in a paste put on the exposed skin.  相似文献   

16.
    
Quantum dots (QDs, i.e., semiconductor nanocrystals) can be formed by spontaneous self‐assembly during epitaxial growth of lattice‐mismatched semiconductor systems. InAs QDs embedded in GaInAsP on InP are introduced, which can be continuously wavelength‐tuned over the 1.55 μm region by inserting ultrathin GaAs or GaP interlayers below them. We subsequently introduce a state‐filling optical nonlinearity, which only requires two electron–hole pairs per QD. We employ this nonlinearity for all‐optical switching using a Mach–Zehnder interferometric switch. We find a switching energy as low as 6 fJ.  相似文献   

17.
Three Ta-doped strontium titanates were prepared as potential candidates for n-type thermoelectric oxides. The purity of the polycrystalline samples of SrTi1−x Ta x O3 (x = 0.05 to 0.14) were characterized by means of powder x-ray diffraction and electron probe micro analysis (EPMA). We present the results of Seebeck coefficient, electrical conductivity, and thermal conductivity measurements performed at high temperatures.  相似文献   

18.
半导体制冷中的饱和电流   总被引:2,自引:0,他引:2  
对半导体制冷中的论和电流现象进行了解释。理论分析表明,要使器件在△Tmax条件下工作,对元件高度应有一定限制。  相似文献   

19.
    
Electrically conducting nanocomposites of bismuth metal and insulating ceramic phases of SiO2 and MgO were generated via high‐energy ball milling for 24 h using zirconia milling media. The resulting nanocomposites contain Bi nanoparticles with sizes down to 5 nm in diameter. The morphology is a strong function of the oxide phase: specifically, the Bi appears to wet MgO while it forms spherical nanoparticles on the SiO2. X‐ray diffraction measurements indicate a nominal bismuth grain size of 50 nm, and peak fitting to a simple bidisperse model yields a mixture of approximately 57 % bulk bismuth and 43 % 27 nm diameter crystallites. Nanoparticles as small as 5 nm are observed in transmission electron microscopy (TEM), but may not constitute a significant volume fraction of the sample. Differential scanning calorimetry reveals dramatic broadening in the temperatures over which melting and freezing occur and a surprising persistence of nanostructure after thermal cycling above the melting point of the Bi phase.  相似文献   

20.
    
2D materials based on main group element compounds have recently attracted significant attention because of their rich stoichiometric ratios and structure motifs. This review focuses on the phases in various 2D binary materials including III–VI, IV–VI, V–VI, III–V, IV–V, and V–V materials. Reducing 3D materials to 2D introduces confinement and surface effects as well as stabilizes unstable 3D phases in their 2D form. Their crystal structures, stability, preparation, and applications are summarized based on theoretical predictions and experimental explorations. Moreover, various properties of 2D materials, such as ferroelectric effect, anisotropic optical and electrical properties, ultralow thermal conductivity, and topological state are discussed. Finally, a few perspectives and an outlook are given to inspire readers toward exploring 2D materials with new phases and properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号