首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper considers the problem of adaptive robust H state feedback control for linear uncertain systems with time‐varying delay. The uncertainties are assumed to be time varying, unknown, but bounded. A new adaptive robust H controller is presented, whose gains are updating automatically according to the online estimates of uncertain parameters. By combining an indirect adaptive control method and a linear matrix inequality method, sufficient conditions with less conservativeness than those of the corresponding controller with fixed gains are given to guarantee robust asymptotic stability and H performance of the closed‐loop systems. A numerical example and its simulation results are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a solution to the problem of digitally implementing backstepping adaptive control for linear systems. The continuous‐time system to be controlled is given a discrete‐time representation in the δ‐operator. A discrete adaptive backstepping controller is then designed for such a discrete‐time model. The effect of the modelling error, generated by the sampling process, is accounted for in the parameter update law by a σ‐modification. It is shown that all the signals (discrete and continuous) of the closed loop are uniformly bounded, with a region of attraction which is a K function of the sampling rate. An upper bound on the asymptotic tracking error is then given, and shown to be proportional to the sampling period. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, an adaptive switching control algorithm is proposed for the stabilization of uncertain discrete‐time systems with time‐varying delay. It is assumed that the time delay is unknown and time varying, nonetheless bounded with a known bound. It is supposed that the system is highly uncertain, and that a set of controllers are designed (off‐line) to stabilize the system in the whole uncertain parameter space; subsequently, a switching scheme is developed to stabilize the uncertain time‐delay system. A thorough stability analysis for the uncertain time‐delay system under the mentioned control scheme is provided. Furthermore, an upper bound on the allowable rate of change of the system parameters and delay is obtained. Simulation results are presented to show the efficacy of the proposed switching scheme. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is devoted to designing iterative learning control (ILC) for multiple‐input multiple‐output discrete‐time systems that are subject to random disturbances varying from iteration to iteration. Using the super‐vector approach to ILC, statistical expressions are presented for both expectation and variance of the tracking error, and time‐domain conditions are developed to ensure their asymptotic stability and monotonic convergence. It shows that time‐domain conditions can be tied together with an H‐based condition in the frequency domain by considering the properties of block Toeplitz matrices. This makes it possible to apply the linear matrix inequality technique to describe the convergence conditions and to obtain formulas for the control law design. Furthermore, the H‐based approach is shown applicable to ILC design regardless of the system relative degree, which can also be used to address issues of model uncertainty. For a class of systems with a relative degree of one, simulation tests are provided to illustrate the effectiveness of the H‐based approach to robust ILC design. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
This paper deals with the problem of robust H filter design for Markovian jump systems with norm‐bounded time‐varying parameter uncertainties and mode‐dependent distributed delays. Both the state and the measurement equations are assumed to be with distributed delays. Sufficient conditions for the existence of robust H filters are obtained. Via solving a set of linear matrix inequalities, a desired filter can be constructed. The developed theory is illustrated by a simulation example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses a tracking problem for uncertain nonlinear discrete‐time systems in which the uncertainties, including parametric uncertainty and external disturbance, are periodic with known periodicity. Repetitive learning control (RLC) is an effective tool to deal with periodic unknown components. By using the backstepping procedures, an adaptive RLC law with periodic parameter estimation is designed. The overparameterization problem is overcome by postponing the parameter estimation to the last backstepping step, which could not be easily solved in robust adaptive control. It is shown that the proposed adaptive RLC law without overparameterization can guarantee the perfect tracking and boundedness of the states of the whole closed‐loop systems in presence of periodic uncertainties. In addition, the effectiveness of the developed controller is demonstrated by an implementation example on a single‐link flexible‐joint robot. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with the problems of stability analysis, H performance analysis, and robust H filter design for uncertain Markovian jump linear systems with time‐varying delays. The purpose is to improve the existing results on these problems. Firstly, a new delay‐dependent stability criterion is obtained on the basis of a novel mode‐dependent Lyapunov functional. Secondly, a new delay‐dependent bounded real lemma (BRL) is derived. It is shown that the presented stability criterion and the BRL are less conservative than the existing ones in the literature. Thirdly, with the new BRL, delay‐dependent conditions for the solvability of the addressed H filtering problem are given. All the results obtained in this paper are expressed by means of strict linear matrix inequalities. Three numerical examples are provided to demonstrate the utility of the proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Without using Nussbaum gain, a novel method is presented to solve the unknown control direction problem for discrete‐time systems. The underlying idea is to fully exploit the convergence property of parameter estimates in well‐known adaptive algorithms. By incorporating two modifications into the control and the parameter update laws, respectively, we present an adaptive iterative learning control scheme for discrete‐time varying systems without the prior knowledge of the sign of control gain. It is shown that the proposed adaptive iterative learning control can achieve perfect tracking over the finite time interval while all the closed‐loop signals remain bounded. An illustrative example is presented to verify effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we show that the transient bounds of Morse's dynamic certainty equivalent adaptive controller established previously by us can be considerably strengthened. Specifically, we derive a computable bound on the ??-norm of the tracking error which, in contrast with the local bound obtained previously by us, holds for all system initial conditions. Also, we add an ‘adaptation gain’ in the high-order estimator to prove that, by increasing this gain, the ??-norm of the tracking error can be made arbitrarily small without increasing its ?? norm. This is an improvement over the results obtained with backstepping designs, where these performance measures must be traded off in the selection of the adaptation speed.  相似文献   

10.
In this paper, we solve the problem of output tracking for linear uncertain systems in the presence of unknown actuator failures using discontinuous projection‐based output feedback adaptive robust control (ARC). The faulty actuators are characterized as unknown inputs stuck at unknown values experiencing bounded disturbance and actuators losing effectiveness at unknown instants of time. Many existing techniques to solve this problem use model reference adaptive control (MRAC), which may not be well suited for handling various disturbances and modeling errors inherent to any realistic system model. Robust control‐based fault‐tolerant schemes have guaranteed transient performance and are capable of dealing with modeling errors to certain degrees. But, the steady‐state tracking accuracy of robust controllers, e.g. sliding mode controller, is limited. In comparison, the backstepping‐based output feedback adaptive robust fault‐tolerant control (ARFTC) strategy presented here can effectively deal with such uncertainties and overcome the drawbacks of individual adaptive and robust controls. Comparative simulation studies are performed on a linearized Boeing 747 model, which shows the effectiveness of the proposed scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an adaptive prescribed performance control method is presented for a class of uncertain strict feedback nonaffine nonlinear systems with the coupling effect of time‐varying delays, dead‐zone input, and unknown control directions. Owing to the universal approximation property, fuzzy logic systems are used to approximate the uncertain terms in the system. Since there is no systematic approach to determine the required upper bounds of errors in control systems, the prior selection of control parameters to have a satisfactory performance is somehow impossible. Therefore, the prescribed performance technique as a solution is applied in this study to bring satisfactory performance indices to the system such as overshoot and steady state performance within a predetermined bound. Dynamic surface control strategy is also introduced to the proposed control scheme to address the “explosion of complexity” behavior existing in conventional backstepping methods. To ease the control design, the mean‐value theorem is utilized to transform the nonaffine system into the affine one. Moreover, with the help of this theorem, the unknown dead‐zone nonlinearity is separated into the linear and nonlinear disturbance‐like bounded term. The proposed method relaxes a prior knowledge of control direction by employing Nussbaum‐type functions, and the effect of time‐varying delays are compensated by constructing the proper Lyapunov‐Krasovskii functions. The proposed controller guarantees that all the closed‐loop signals are semiglobally uniformly ultimately bounded and the error evolves within the decaying prescribed bounds. In the end, in order to demonstrate the superiority of this method, simulation examples are given.  相似文献   

12.
A direct adaptive non‐linear control framework for multivariable non‐linear uncertain systems with exogenous bounded disturbances is developed. The adaptive non‐linear controller addresses adaptive stabilization, disturbance rejection and adaptive tracking. The proposed framework is Lyapunov‐based and guarantees partial asymptotic stability of the closed‐loop system; that is, asymptotic stability with respect to part of the closed‐loop system states associated with the plant. In the case of bounded energy L2 disturbances the proposed approach guarantees a non‐expansivity constraint on the closed‐loop input–output map. Finally, several illustrative numerical examples are provided to demonstrate the efficacy of the proposed approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we consider a model reference adaptive control scheme where the classical error augmentation and standard tuning error normalization are avoided through the use of Morse's high-order tuner. We consider the particular scheme of Morse where the concept of dynamic certainty equivalence is used to reduce the error equation to one that involves only first-order dynamics. With such an error equation, it is first shown that one can directly obtain computable L∞ and L∞ bounds on the tracking error. This is an improvement over some earlier results where either only local L∞ bounds were obtained or the calculation of the global bounds required additional computation. Second, inserting an adaptive gain into Morse's high-order tuner, we show that fast adaptation improves both the L2 and L∞ bounds on the tracking error, in the sense that the effect of the parametric uncertainty on these bounds is attenuated. Finally, using a simple example, we demonstrate how an earlier attempt to use the adaptive gain to simultaneously attenuate the effect of the parametric uncertainty as well as the initial conditions on the L2 bound for the tracking error has led to an incorrect result.  相似文献   

14.
The problem of robust stabilization for uncertain dynamic time‐delay systems is considered. Firstly a class of time‐delay systems with uncertainties bounded by high‐order polynomials and unknown coefficients are considered. The corresponding controller is designed by employing adaptive method. It is shown that the controller designed can render the closed‐loop system uniformly ultimately bounded stable based on Lyapunov–Krasovskii method and Lyapunov stability theory. Then the proposed adaptive idea is applied to stabilizing a class of large‐scale time‐delay systems with strong interconnections. A decentralized feedback adaptive controller is designed which guarantees the closed‐loop large‐scale systems uniformly ultimately bounded stable. Finally, numerical examples are given to show the potential of the proposed techniques. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the problem of robust H filtering for switched linear discrete‐time systems with polytopic uncertainties is investigated. Based on the mode‐switching idea and parameter‐dependent stability result, a robust switched linear filter is designed such that the corresponding filtering error system achieves robust asymptotic stability and guarantees a prescribed H performance index for all admissible uncertainties. The existence condition of such filter is derived and formulated in terms of a set of linear matrix inequalities (LMIs) by the introduction of slack variables to eliminate the cross coupling of system matrices and Lyapunov matrices among different subsystems. The desired filter can be constructed by solving the corresponding convex optimization problem, which also provides an optimal H noise‐attenuation level bound for the resultant filtering error system. A numerical example is given to show the effectiveness and the potential of the proposed techniques. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The adaptive robust output tracking control problem is considered for a class of uncertain nonlinear time‐delay systems with completely unknown dead‐zone inputs. A new design method is proposed so that some adaptive robust output tracking control schemes with a rather simple structure can be constructed. It is not necessary to know the nonlinear upper bound functions of uncertain nonlinearities. In fact, the constructed output tracking control schemes are structurally linear in the state and have a self‐tuning control gain function that is updated by an adaptation law. In this paper, the dead‐zone input is nonsymmetric, and its information is assumed to be completely unknown. In addition, a numerical example is given to describe the design procedure of the presented method, and the simulations of this numerical example are implemented to demonstrate the validity of the theoretical results.  相似文献   

17.
Recent results on the adaptive control of linear time‐varying systems have considered mostly the case in which the range or rate of parameter variations is small. In this paper, a new state feed‐back model reference adaptive control is developed for systems with bounded arbitrary parameter variations. The important feature of the proposed adaptive control is an uncertainty estimation algorithm, which guarantees almost zero tracking error. Note that the conventional parameter estimation algorithm in the adaptive control guarantees only bounded tracking error. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
The main purpose of this paper is to propose a direct and simple approach, called a self‐tuning design approach, to dealing with any nonsymmetric dead‐zone input nonlinearity where its information is completely unknown. In order to describe the approach, the output tracking problem is considered for a class of uncertain nonlinear systems with any nonsymmetric dead‐zone input. First, a dead‐zone input is represented as a time‐varying input‐dependent function such that the considered dynamical system with dead‐zone input can be transfered into an uncertain nonlinear dynamical system subject to a linear input with time‐varying input coefficient. Then, by making use of the self‐tuning design approach, a class of adaptive robust output tracking control schemes with a rather simple structure is synthesized. Thus, the proposed direct and simple self‐tuning design approach can be easily understood by the engineering designers, and the resulting simple adaptive robust control schemes can be well implemented in most practical engineering control problems. By combining the proposed self‐tuning design approach with other control methods, one may expect to obtain a number of interesting results for a rather large class of uncertain nonlinear dynamical systems with dead‐zone in the actuators. Finally,the simulations of some numerical examples are provided to demonstrate the validity of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the problem of fault estimation and accommodation for a class of networked control systems with nonuniform uncertain sampling periods. Firstly, the reason why the adaptive fault diagnosis observer cannot be applied to networked control systems is analyzed. Based on this analysis, a novel robust fault estimation observer is constructed to estimate both continuous‐time fault and system states by using nonuniformly discrete‐time sampled outputs. Furthermore, using the obtained states and fault information, a nonuniformly sampled‐data fault tolerant control law is designed to preserve the stability of the closed‐loop system. The proposed scheme can not only guarantee the impact of continuous‐time uncertainties and discrete‐time sampled estimation errors on the faulty system to satisfy a H performance index but also repress the negative effect of the unknown intersample behavior of continuous‐time fault by use of an inequality technique. Finally, simulation results are included to demonstrate the feasibility of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This paper proposes a robust adaptive motion/force tracking controller for holonomic constrained mechanical systems with parametric uncertainties and disturbances. First, two types of well‐known holonomic systems are reformulated as a unified control model. Based on the unified control model, an adaptive scheme is then developed in the presence of pure parametric uncertainty. The proposed controller guarantees asymptotic motion and force tracking without the need of extra conditions. Next, when considering external disturbances, control gains are designed by solving a linear matrix inequality (LMI) problem to achieve prescribed robust performance criterion. Indeed, arbitrary disturbance/parametric error attenuation with respect to both motion and force errors along with control input penalty are ensured in the L2‐gain sense. Finally, applications are carried out on a two‐link constrained robot and two planar robots transporting a common object. Numerical simulation results show the expected performances. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号