首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel organic rectorite (OREC) was prepared by treating the natural sodium‐rectorite (Na‐REC) with ionic liquid 1‐hexadecyl‐3‐methylimidazolium bromide ([C16mim]Br). X‐ray diffraction (XRD) analysis showed that the interlayer spacing of the OREC was expanded from 2.23nm to 3.14nm. Furthermore, two types of OREC/epoxy nanocomposites were prepared by using epoxy resin (EP) as matrix, 2‐ethyl‐4‐methylimidazole (2‐E‐4‐MI) and tung oil anhydride (TOA) as curing agents, respectively. XRD and transmission electron microscope (TEM) analysis showed that the intercalated nanocomposite was obtained with addition of the curing agent 2‐E‐4‐MI, and the exfoliated nanocomposite was obtained with addition of the curing agent TOA when the OREC content was less than 2 wt %. For the exfoliated nanocomposite, the mechanical and thermal property tests indicated that it had the highest improvement when OREC content was 2 wt% in EP. Compared to pure EP, 60.3% improvement in tensile strength, 26.7% improvement in bending strength, 34% improvement in bending modulus, 14°C improvement in thermal decomposition temperature (Td) and 5.7°C improvement in glass transition temperature (Tg) were achieved. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A newly developed kind of layered clay, rectorite (REC), has been used to yield intercalated or exfoliated thermoplastic polyurethane rubber (TPUR) nanocomposites by melt‐processing intercalation. Because of the swollen layered structure of REC, similar to that of montmorillonite, organic rectorites (OREC) can also be obtained through ion‐exchange reaction with two different quaternary ammonium salts (QAS1, QAS2) and benzidine (QAS3). The microstructure and dispersibility of OREC layers in TPUR matrix were examined by X‐ray diffraction and transmission electron microscopy, which revealed not only that the composites with lower amounts of clay are intercalation or part exfoliation nanocomposites, but also that the mechanical properties of the composites were substantially enhanced. The maximum ultimate tensile strength for TPUR/OREC nanocomposites appeared at 2 wt % OREC loading. With increasing OREC contents, the tear strength of the composites increased significantly. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 608–614, 2004  相似文献   

3.
The objective of this research was to investigate thermal stability and dynamic mechanical behavior of Exfoliated graphite nanoplatelets (xGnP™)‐Linear Low‐Density Poly Ethylene (LLDPE) nanocomposites with different xGnP loading content. The xGnP‐LLDPE nanocomposites were fabricated by solution and melt mixing in various screw rotating systems such as co‐, counter‐, and modified‐corotating. The storage modulus (E′) of the composites at the starting point of −50°C increased as xGnP contents increased. E′ of the nanocomposite with only 7 wt% of xGnP was 2.5 times higher than that of the control LLDPE. Thermal expansion and the coefficient of thermal expansion of xGnP‐loaded composites were much lower than those of the control LLDPE in the range of 45–80°C (299.8 × 10−6/°C) and 85–100°C (365.3 × 10−6/°C). Thermal stability of the composites was also affected by xGnP dispersion in LLDPE matrix. The xGnP‐LLDPE nanocomposites by counter‐rotating screw system showed higher thermal stability than ones by co‐rotating and modified‐co‐rotating system at 5 wt% and 12 wt% of xGnP. xGnP had a great effect on high thermal stability of xGnP‐LLDPE composites to be applied as tube and film for electrical materials. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

4.
A series of crysnanoclay-loaded thermoplastic polyurethane (TPU) elastomer/polycarbonate (PC) nanocomposites have been prepared using twin screw extruders. The physicomechanical properties such as tensile behaviors, flexural properties and impact strength of the composites have been reported. Significant improvement in tensile modulus and flexural modulus were noticed for nanocomposites. The thermal characteristics of nanocomposites have been determined by thermogravimetric analysis (TGA) techniques. Thermal degradation kinetic parameters such as energy of activation (Ea) have been calculated from TGA thermograms for the nanocomposites using three mathematical models namely; Coats–Redfern, Horowitz – Metzger and Broido's methods and the results are compared. The effect of crysnanoclay on the storage modulus (E′), loss modulus (E″), and damping factor (tan δ) as a function of temperature have been measured by dynamic mechanical analysis (DMA). The storage moduli of nanocomposites have been increased after incorporating crysnanoclay in polymer matrix.  相似文献   

5.
Octa(aminophenyl) polyhedral oligomeric silsesquioxane (OAP‐POSS) and boron‐containing phenol‐formaldehyde resin (BPFR) were synthesized, respectively. The BPFR nanocomposites with different OAP‐POSS content (wt%) were prepared, and their properties were characterized. The results show that the thermal degradation process of this nanocomposites can be divided into three stages, and they are all following the first order mechanism. The residual ratio and thermal degradation activation energy Ea of 9 wt% OAP‐POSS/BPFR nanocomposites are both better than others and the Ea increase gradually in three stages, which is 93.3, 134.0, and 181.9 kJ mol−1, respectively. Its residual ratio at 900°C is 36.48%. The mechanical loss peak temperature Tp is 228°C for 12 wt% OAP‐POSSS/BPFR nanocomposites, which is higher 48°C than pure BPFR. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
Fibers in polymer composites can be designed in various orientations for their usage in service life. Various fiber orientated polymer composites, which are used in aeroplane and aerospace applications, are frequently subjected to thermal cycles because of the changes in body temperatures at a range of −60 to 150°C during flights. It is an important subject to investigate the visco‐elastic properties of the thermal cycled polymer composite materials which have various fiber orientations during service life. Continuous fiber reinforced composites with a various fiber orientations are subjected to 1,000 thermal cycles between the temperatures of 0 and 100°C. Dynamic mechanic thermal analysis (DMTA) experiments are carried out by TA Q800 type equipment. The changes in glass transition temperature (Tg), storage modulus (E′), loss modulus (E′′) and loss factor (tan δ) are inspected as a function of thermal cycles for different fiber orientations. It was observed that thermal and dynamic mechanical properties of the polymer composites were remarkably changed by thermal cycles. It was also determined that the composites with [45°/−45°]s fiber orientation presented the lowest dynamic mechanical properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

7.
The effect of CNFs on hard and soft segments of TPU matrix was evaluated using Fourier transform infrared (FTIR) spectroscope. The dispersion and distribution of the CNFs in the TPU matrix were investigated through wide angle X‐ray diffraction (WAXD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), polarizing optical microscope (POM), and atomic force microscope (AFM). The thermogravimetric analysis (TGA) showed that the inclusion of CNF improved the thermal stability of virgin TPU. The glass transition temperature (Tg), crystallization, and melting behaviors of the TPU matrix in the presence of dispersed CNF were observed by differential scanning calorimetry (DSC). The dynamic viscoelastic behavior of the nanocomposites was studied by dynamical mechanical thermal analysis (DMTA) and substantial improvement in storage modulus (E') was achieved with the addition of CNF to TPU matrix. The rheological behavior of TPU nanocomposites were tested by rubber processing analyzer (RPA) in dynamic frequency sweep and the storage modulus (G') of the nanocomposites was enhanced with increase in CNF loading. The dielectric properties of the nanocomposites exhibited significant improvement with incorporation of CNF. The TPU matrix exhibits remarkable improvement of mechanical properties with addition of CNF. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Epoxy acrylate (EA) coatings modified with organically modified rectorite (OREC) were synthesized employing the ultraviolet-curing technique. Two kinds of alkyl ammonium ions, octadecyltrimethylammonium chloride (OTAC) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MAOTMA), were used to modify rectorite (REC). The methacrylate functionalities of MAOTMA were capable of reacting with the acrylate groups of EA. The structure of OREC was characterized by FTIR and XRD and the results indicated that the surfactants were successfully intercalated into the REC interlayers via cation exchange process. The morphology of nanocomposites was investigated by SEM and TEM. OREC showed better dispersion in EA matrix compared with unmodified REC. The T g of neat EA obtained by DMA was 75.6°C, while for 5 wt% EA/MAOTMA-REC and EA/OTAC-REC nanocomposites it increased to 76.5 and 80.8°C, respectively. The nanocomposite with 3 wt% loading of OTAC-REC had the highest T g (89.7°C). TGA revealed that the thermal stability of nanocomposites was enhanced by OTAC-REC and MAOTMA-REC and the thermal stability of EA/MAOTMA-REC nanocomposites was better than that of EA/OTAC-REC nanocomposites. The mechanical properties of nanocomposites containing OTAC-REC and MAOTMA-REC were better than those of nanocomposites containing unmodified REC. With increasing OREC content, the adhesive force of nanocomposites decreased slightly and the flexibility increased significantly.  相似文献   

9.
The dynamic mechanical properties of A‐glass bead filled polypropylene (PP)/ethylene–propylene–diene monomers polymer (EPDM) ternary composites have been measured over a temperature range from −80 °C to 100 °C and at a fixed frequency of 1 Hz, using a dynamic mechanical analyser (DMA), to identify the effects of the filler content and its surface treatment with a silane coupling agent on the dynamic viscoelastic behaviour. The results show that the storage modulus (Ec) and loss modulus (Ec) of these composites with 10% volume fraction of EPDM at 25 °C increase non‐linearly with increasing volume fraction of glass beads (ϕg). At the same test conditions, the Ec value of the PP/EPDM filled with pretreated glass beads is higher than that of the uncoated glass bead filled PP/EPDM system, especially at higher ϕg, while the difference in Ec between both systems is very small. The mechanical damping for the former decreases with increasing ϕg, but the opposite is true for the latter. The glass transition temperature of these composites varies irregularly with ϕg. The dynamic complex viscosity increases nonlinearly with an increase of ϕg. In addition, the interfacial structure between the matrix and inclusions has been observed by means of a scanning electron microscope. © 1999 Society of Chemical Industry  相似文献   

10.
In this study, free‐volume effects on the thermal and mechanical properties of epoxy–SiO2 nanocomposites were investigated. SiO2 particles ranging from 15 nm to 2 µm were used, and the nature of the matrix–filler interphase was modified by surface grafting. Nanoparticles 15 nm in diameter yielded an increase in the glass‐transition temperature (Tg) of the composites up to 5 °C; at the same time, they increased the storage modulus (E′) from 2340 to 2725 MPa. Conversely, large particles markedly decreased both Tg and E′; this suggested the pivotal role of nanoparticle size on the final properties of the nanocomposite. The functionalization of SiO2 nanoparticles markedly improved their dispersion within the epoxy matrix. The positron annihilation lifetime spectroscopy results indicate that the free volume strongly depended on the interphase. These experimental findings obtained here could be extrapolated to industrially relevant nanocomposites and could provide a rationale for the comprehension of free‐volume effects on the thermal and mechanical properties of nanocomposite materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45216.  相似文献   

11.
Diacrylate compounds derived from α‐pinene and limonene (TDAs: TDA‐1 and TDA‐2) were photocured with methacryl‐substituted polysilsesquioxane (ME‐PSQ) prepared from 3‐(trimethoxysilyl)propyl methacrylate and tetramethylammonium hydroxide (TMAOH) in the TDA/ME‐PSQ weight ratio of 20 : 0, 20 : 1, 20 : 2, 20 : 3, and 20 : 4. All the photocured TDA/ME‐PSQ hybrid nanocomposites became transparent. The thermomechanical analysis of the cured TDA/ME‐PSQ revealed that the glass transition temperature (Tg) increased, the thermal expansion coefficient above Tg decreased with increasing ME‐PSQ content, and that the TDA‐1/ME‐PSQ had ca. 30°C greater Tg than the TDA‐2/ME‐PSQ with the same ME‐PSQ content. Also, the dynamic mechanical analysis revealed that the TDA‐1/ME‐PSQ had much greater storage modulus at around 150°C than the corresponding TDA‐2/ME‐PSQ. The flexural strength and modulus of the TDA/ME‐PSQ nanocomposites at 20°C had maximum at ME‐PSQ content 4.8 and 13.0 wt %, respectively. As a whole, the thermal and mechanical properties of the nanocomposites were improved by the addition of ME‐PSQ, and those of TDA‐1/ME‐PSQ nanocomposites were superior to those of TDA‐2/ME‐PSQ. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
In this study, we investigated the thermal, dynamic mechanical, mechanical, and electrical properties of polyethylene (PE)–graphene nanosheet (GNS) nanocomposites, with GNS amounts from 0 to 20 wt %, prepared by in situ polymerization. The thermal stability was evaluated by thermogravimetric analysis (TGA) and showed that the addition of GNSs to the polyolefin matrix increased the onset degradation temperature by 30°C. The electrical conductivity, measured by the impedance technique, presented a critical percolation threshold of 3.8 vol % (8.4 wt %) of GNS. A slight decrease in the tensile strength was found. On the other hand, dynamic mechanical analysis showed an increase in the storage modulus of the nanocomposites compared with that of neat PE. The glass‐transition temperature value increased from ?111°C (neat PE) to ?106°C (PE/6.6 wt % GNS). All of these results show that PE became stiffer and thermally more stable and could be transformed from an insulator to a semiconductor material in the presence of GNSs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Three different loading of 3‐aminopropyltriethoxysilane (APS) was used to modify the Na‐montmorillonite via cation exchange technique. The Na‐MMT and silane‐treated montmorillonite (STMMT) were melt‐compounded with polycarbonate (PC) by using Haake Minilab machine. The PC nanocomposite samples were prepared by using Haake Minijet injection molding technique. The intercalation and exfoliation of the PC/MMT nanocomposites were characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the PC nanocomposites were investigated by using dynamic mechanical analyzer and thermogravimetry analyzer. XRD and TEM results revealed partial intercalation and exfoliation of STMMT in PC matrix. Increase of APS concentration significantly enhanced the storage modulus (E′) and improved the thermal stability of PC nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The effect of clay modification on organo‐montmorillonite/NBR nanocomposites has been studied. Organo‐montmorillonite/NBR nanocomposites were prepared through a melt intercalation process. NBR nanocomposites were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), dynamic mechanical thermal analysis (DMTA) and a universal testing machine (UTM). XRD showed that the basal spacing in the clay increased, which means that the NBR matrix was intercalated in the clay layer galleries. On TEM images, organo‐montmorillonite (MMT) particles were clearly observed, having been exfoliated into nanoscale layers of about 10–20 nm thickness from their original 40 µm particle size. These layers were uniformly dispersed in the NBR matrix. The DMTA test showed that for these nanocomposites the plateau modulus and glass transition temperature (Tg) increased with respect to the corresponding values of pure NBR (without clay). UTM test showed that the nanocomposites had superior mechanical properties, ie strength and modulus. These improved properties are due to the nanoscale effects and strong interactions between the NBR matrix and the clay interface. Copyright © 2003 Society of Chemical Industry  相似文献   

15.
Poly(ε‐caprolactone) (PCL) nanocomposites were prepared using two different types of organically modified nanosilicates by melt intercalation with an internal mixer. Dynamic mechanical analysis revealed possible structural changes in the nanocomposites even during the small deformation occurring during shear oscillatory measurements, as evidenced by a V‐shaped modulus change in the plot of the dynamic storage modulus as a function of stepwise increased temperature. X‐ray diffraction patterns were recorded at different simulated temperatures during the various stages of dynamic measurements. The X‐ray data indicate that the structural changes can be ascribed to a further intercalation of the PCL matrix chains into the silicate layers. This further intercalation is a consequence of the heat treatment during the dynamic mechanical measurements. Furthermore, there is a considerable vertical shift in addition to the horizontal shift in the higher temperature regime, which allows the mapping of a master curve through the application of the time‐temperature superposition principle to the dynamic storage and the loss modulus data obtained at various isothermal temperatures. The present study is also concerned with the relative molecular mobility of both PCL nanocomposites in the given experimental conditions considering the Williams‐Landel‐Ferry (WLF) equation and the Arrhenius relationship between the horizontal shift factor and the activation energy of flow. Moreover, the extent of the vertical shift as a function of temperature made it possible to determine the apparent activation energy of the further intercalation of PCL into the silicate layers. This intercalation is caused by the additional exposure to heat during the dynamic mechanical measurements after mixing, which led to a comparison of the relative diffusivity of the PCL matrix in the two nanocomposites.

Dynamic shear storage moduli G′ of PCLOC25A and PCLOC30B as a function of temperature with increase increments of 20 °C from 60 to 260 °C. The G′ data were obtained from isothermal frequency sweep G′(ω) data at ω = 1 rad · s?1 at the corresponding temperatures.  相似文献   


16.
The melt compounding technique was employed to prepare thermoplastic natural rubber (TPNR) nanocomposites. The maleic anhydride grafted polyethylene (MA-PE) as a coupling agent was used to improve the filler-matrix interfacial adhesion. TPNR were prepared in the ratio of (70:20:10) from linear low-density polyethylene (LLDPE), natural rubber (NR) and liquid natural rubber (LNR) as a compatibilizer between the matrix. The composites were prepared using the in-situ method at the optimum processing parameter at 140°C with 100 rpm mixing speed and 12 minutes processing time. The results of the tensile test showed that the optimum of clay loading was obtained at 4 wt%. Dynamic mechanical analysis (DMA) was performed to investigate the thermomechanical properties of the composites. The results show that the addition of organoclay has improved the storage modulus (E′) and loss modulus (E′′) of TPNR nanocomposites. The α transition peaks was also shifted to the higher temperature. However, nanocomposites with MA-PE demonstrated higher, E′ and E′′ compared to TPNR nanocomposites without MA-PE. The TEM results show good clay dispersion with a combination of intercalated-exfoliated structure in the TPNR matrix.  相似文献   

17.
An interesting correlation between initial loading and nature of wrapping of regioregular poly(3‐hexylthiophene) (rrP3HT) on multiwalled carbon nanotube and their combined effect on dynamic‐ and thermomechanical properties in ternary system (thermoplastic polyurethane as matrix) is highlighted. Wrapping of rrP3HT on carbon nanotube (CNT) makes the hexyl side chains thermally nonequivalent and composites more stable. Dynamic‐ and thermomechanical analysis ascertained the miscibility (single Tg = ?40°C), large mechanical reinforcement, and improved storage modulus of nanocomposites in the presence of CNT compared to its blends. Two breaks at ~ ?100 and ~ ?40°C for TPU‐P3HT composites (PHs) and TPU‐P3HT‐MWCNT composites (PHCs) in the loss modulus vs. temperature plot indicates two different types of transitions in P3HT chains. Dimensional stability by expansion probe technique measures low coefficient of thermal expansion of PHCs compared to its blends. Softening property by penetration probe technique suggests that 2.5 wt % loading of P3HT exhibits lowest degree of penetration compared to other nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Nanofibers of Al2O3 (commercial product NafenTM) with characteristic length of ~100 nm and diameter of ~10 nm were used to create new hybrid materials based on copolymer of ethylene and propylene. Nanocomposites were obtained by in situ catalytic copolymerization on the system rac‐Et(2‐MeInd)2ZrMe2/isobutylalumoxane. Formation of the nanocomposites with uniform distribution of Nafen nanoparticles in polymer matrix was confirmed by scanning and transmission electron microscopy. According to dynamic mechanical analysis data, introduction of the nanofiller in an amount of up to 3 wt % leads to an increase in glass transition temperature by 10 °C (E″) and by 21 °C (tan δ). The nanocomposites exhibit improved physico‐mechanical properties (tensile strength and elongation at break). It is shown that the nanofiller significantly improves resistance of the nanocomposite to the thermo‐oxidative and thermal degradation. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44678.  相似文献   

19.
The present study deals with the effects of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites using dynamic mechanical analysis. Composites of polypropylene and various natural fibers including kenaf fibers, wood flour, rice hulls, and newsprint fibers were prepared at 25 and 50% (by weight) fiber content levels. One and two percent maleic anhydride grafted polypropylene was also used as the compatibilizer for composites containing 25 and 50% fibers, respectively. Specimens for dynamic mechanical analysis tests were cut out of injection‐molded samples and were tested over a temperature range of ?60 to +120°C. Frequency of the oscillations was fixed at 1 Hz and the strain amplitude was 0.1%, which was well within the linear viscoelastic region. The heating rate was 2°C/min for all temperature scan tests. Storage modulus (E′), loss modulus (E″), and mechanical loss factor (tan δ) were collected during the test and were plotted versus temperature. An increase in storage and loss moduli and a decrease in the mechanical loss factor were observed for all composites indicating more elastic behavior of the composites as compared with the pure PP. Changes in phase transition temperatures were monitored and possible causes were discussed. Results indicated that glass transition was slightly shifted to lower temperatures in composites. α transition temperature was higher in the case of composites and its intensity was higher as well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4341–4349, 2006  相似文献   

20.
BACKGROUND: Poly(methyl methacrylate) (PMMA)–organoclay nanocomposites with octadecylammonium ion‐modified montmorillonite, prepared via melt processing, over a wide range of filler loading (2–16 wt%) were investigated in detail. These hybrids were characterized for their dispersion structure, and thermal and mechanical properties, such as tensile modulus (E), break stress (σbrk), percent break strain (εbrk) and ductility (J), using wide‐angle X‐ray diffraction, transmission electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and tensile and impact tests. RESULTS: Intercalated nanocomposites were formed even in the presence of 16 wt% clay (high loading) in PMMA matrix. PMMA intercalated into the galleries of the organically modified clay, with a change in d‐spacing in the range 11–16 Å. TGA results showed improved thermal stability of the nanocomposites. The glass transition temperature (Tg) of the nanocomposites, from DSC measurements, was 2–3 °C higher than that of PMMA. The ultimate tensile strength and impact strength decreased with increasing clay fraction. Tensile modulus for the nanocomposites increased by a significant amount (113%) at the highest level of clay fraction (16 wt%) studied. CONCLUSION: We show for the first time the formation of intercalated PMMA nanocomposites with alkylammonium‐modified clays at high clay loadings (>15 wt%). Tensile modulus increases linearly with clay fraction, and the enhancement in modulus is significant. A linear correlation between tensile strength and strain‐at‐break is shown. Thermal properties are not affected appreciably. Organoclay can be dispersed well even at high clay fractions to form nanocomposites with superior bulk properties of practical interest. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号