首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
掌握武钢1号高炉炉缸的侵蚀状态,明确炭砖的破坏过程及其侵蚀机理,对指导高炉操作、延长高炉使用寿命具有重要意义。通过钻芯取样对武钢1号高炉炉缸开展了破损调查,采用化学分析、光镜、电镜等手段研究了炉缸残余炭砖的侵蚀特性。结果表明,武钢1号高炉炉缸整体呈“锅底”状侵蚀,近铁口区域的侵蚀相对非铁口区更加严重,自铁口中心线向下,残余炭砖的完好层长度逐渐变短,破损层长度逐渐变长。有害元素K在炭砖内的存在形式为硅铝酸盐,Zn和Na元素在炭砖内的存在形式主要为氧化物,Pb元素在炭砖内的存在形式为硫化物。沿着炉缸半径方向,残余炭砖的体密度先增大后减小,在有害元素富集区域达到最大。炭砖结构被破坏主要原因是热应力、有害元素的富集和铁水渗透。  相似文献   

2.
袁骧  罗大军  岳留威 《炼铁》2021,40(1):15-20
对湘钢2号高炉进行了破损调查研究,计算了炉缸侧壁炭砖残余厚度、死铁层深度和死料柱漂浮高度,同时测量了炉缸炭砖剩余厚度.研究结果表明,2号高炉死铁层深度为1.0 ~1.8m,远小于设计值,死料柱透液性变差,铁水环流进一步加剧,导致铁口区域炉缸侧壁侵蚀相当严重;3个铁口下方0.5 ~1.5m炭砖最薄处剩余厚度110mm,且...  相似文献   

3.
《炼铁》2019,(5)
对方大特钢1号高炉炉缸炉衬及沉积物等进行了调查取样分析研究。研究结果表明:在铁口中心线下方0.8~1m处,即炉缸第8、9层炭砖位置侵蚀最为严重,尤其在第7、8号风口方向,其残厚约50mm,并发现有大量有害元素富集的现象;炉缸炭砖的侵蚀主要是由脆化层的形成与脱落、铁水环流以及铁水渗炭等因素综合作用的结果;此外,炉缸侧壁与炉缸底部形成了大量的富钛层,厚度约40 mm,虽然炉缸侧壁与炉底的富钛层的钛析出相均为TiC_(0.3)N_(0.7),但两者的形貌差异较大。  相似文献   

4.
赵运建  邹忠平  牛群  许俊 《炼铁》2023,(5):45-48+53
通过对国内多座高炉炉缸的破损调查发现,在圆周方向上,铁口附近炉缸侧壁的炭砖侵蚀比较严重;在高度方向上,铁口中心线以下区域,特别是铁口中心线下方1.0~2.0 m处的炭砖,侵蚀比铁口中心线上方区域严重;部分高炉的炉缸侧壁局部存在类似“老鼠洞”的侵蚀现象。导致炉缸异常侵蚀的原因主要有气隙影响传热、入炉碱金属负荷及锌负荷过高、高炉烘炉不彻底、高炉冶炼强度过高、风口漏水导致炉缸积水现象严重等。在高炉日常生产操作中,炉缸积水及气隙对炉缸的长寿及安全的危害应得到足够的重视,建议采取措施并形成一种常规管理制度,加强对炉缸积水及气隙的防治。  相似文献   

5.
为了进一步明确柳钢4号高炉炉缸侧壁温度升高原因和炉缸侵蚀状态,通过对柳钢4号高炉炉缸结构设计、原燃料质量和生产参数进行调研分析,结合炉缸侧壁温度的变化规律和炭砖残厚的计算,分析了炉缸侧壁温度升高原因及侵蚀状态。结果表明,4号高炉炉缸冷却能力和炉缸侧壁温度监测仍有待加强;除侧壁炭砖侵蚀外,原燃料质量波动和冶炼强度增大等也是炉缸侧壁温度上升的重要原因;炉缸侵蚀最为严重的部位在铁口中心线以下1.9 m的位置,表现为“象脚”侵蚀。  相似文献   

6.
《炼铁》2016,(3)
在湘钢1号高炉停炉大修过程中,对炉缸进行了侵蚀测量和自上而下取样分析,重点对炉缸炭砖热面黏结物的物相组成和炭砖脆化层的形成机理进行分析。结果表明:炉缸自上而下的黏结物中都有锌、碱金属等有害元素存在,锌在铁口以上主要以鳞片状形式黏附在黏结物上,对炉缸炭砖具有一定的保护作用,而在铁口以下主要是通过铁水侵入炭砖空隙,在炭砖内膨胀破坏炭砖结构;炭砖脆化层的产生,主要是由铁水渗入、有害元素侵蚀和热应力破坏共同作用的结果 。  相似文献   

7.
对兴澄3号高炉炉缸炭砖宏观破损状况及微观形貌进行调查研究,绘制炉缸侵蚀内型,分析炉缸破损的主要原因及侵蚀机理。调查结果表明:3号高炉经过一代炉龄的生产,炉缸侵蚀为"宽脸"型侵蚀,侵蚀严重区域主要位于铁口下方1.35m~1.85m,侵蚀最严重区域主要集中在1#和3#铁口区域;碳不饱和铁水对炭砖的熔蚀和有害元素侵蚀是3号高炉炭砖破损的主要原因。  相似文献   

8.
唐文华  肖国梁  胡峻峰  刘佳  尹凯 《炼铁》2023,(3):24-27+32
衡钢1号高炉大修投产后不到2年,炉缸个别点温度最高上升到900℃左右,危及安全生产,被迫停炉中修。停炉后观察发现,炉缸炉底呈“象脚状”侵蚀,炉缸第1层炭砖侵蚀严重,最薄弱处炭砖残余厚度仅240mm,从残铁口扒渣门两边炉缸第7~9层炭砖中部可见明显的环裂缝。认为1号高炉炉缸炭砖侵蚀过快的原因主要是:(1)高冶炼强度操作,且炉缸直径偏小,致使炉缸铁水环流强;(2)炉缸炉底耐材部分指标不达标;(3)炭砖冷面与冷却壁之间的炭素捣打料层存在气隙;(4)Pb、Zn及碱金属等有害元素控制不力;(5)铁口深度合格率低。  相似文献   

9.
《炼铁》2019,(4)
莱钢银山1号高炉累计已生产13年,单位炉容产铁量1 1000 t/m~3,利用大修机会,对炉缸侵蚀状况进行了调查。调查结果表明:①1号高炉炉底炉缸为典型的象脚状侵蚀,炉缸部位的UCAR炭砖表现出较好的质量;②炉底两层陶瓷垫完全侵蚀,侧壁的侵蚀并不严重,仍有相对完整的陶瓷杯壁,而且炭砖稳定附着至少500mm厚的渣壳,其主要安全隐患在于炉底第三、四层炭砖的龟裂、粉化和渗铁,有烧穿的风险;③铁口组合砖部位的异常侵蚀是另一个最危险的区域。  相似文献   

10.
为了探析高炉炉缸侵蚀特征及其共性原因,基于京唐1号高炉和通才3号高炉的现场数据,分别计算了炉缸侧壁炭砖残余厚度和死料柱漂浮高度,明确了炉缸炭砖的侵蚀原因,证实了炉缸炭砖的侵蚀部位。结果表明,当死料柱透气性变差时,炉底温度逐渐降低,铁水环流加重,造成了耐火材料的异常侵蚀;由京唐1号高炉死料柱根部位置和炭砖侵蚀位置的关系,证实了死料柱根部对应炭砖易受到异常侵蚀,即铁口中心线下方1~3 m。由于死料柱物理状态和漂浮状态随生产参数和高炉状态的变化而变化,因此侵蚀部位也随之变化,故应稳定原燃料条件及生产参数,并建立死料柱漂浮高度和炭砖残余厚度的实时监测机制,从而保证高炉安全生产,实现高炉长寿。  相似文献   

11.
通过采用保护性的调查手段,实测了高炉炉缸炭砖用后的侵蚀轮廓,获得了残砖结构的宏观和微观形态,分析了其中的残留物。同时,结合国内外部分高炉炭砖用后调查资料后指出,用后大炭砖不再是物性单一的均质体,而是转变为多段在传热方向上具有不同物性的特征。以出铁口标高为基准,其上下区域砖衬工作面上的附着物不同,残留砖衬脆化层中的外来异物不同。并据此推断脆化层的形成机理,为建立炉缸炭砖侵蚀模型提供依据。  相似文献   

12.
为探究沙钢3号高炉炉缸侧壁温度升高原因,对沙钢3号高炉开炉以来的热电偶温度数据及热流强度变化趋势进行统计,并计算了炭砖的残余厚度.结合3号高炉的死铁层深度及冷却系统设计等参数,对炉缸侧壁温度升高的原因进行了解析.结果表明,沙钢3号高炉炭砖侵蚀薄弱区域处于铁口下方1?2 m,最薄位置处于西铁口,炭砖残余厚度约为517 m...  相似文献   

13.
结合首钢股份1号高炉炉缸破损调查结果,从有害元素、焦炭质量、铁水含碳饱和度、死料柱及炉役后期频繁停炉的影响等方面,对炉缸侵蚀原因进行了剖析.破损调查结果表明,炉缸呈现出“象脚形”侵蚀,最为严重的侵蚀部位在铁口中心线下方2.1~2.4m之间,侵蚀最严重部位炭砖残余厚度330 mm,位于25号风口下方.认为炉役后期死铁层加...  相似文献   

14.
王行伟  赵勇  石自新  杨建鹏 《炼铁》2021,40(2):49-51
龙钢5号高炉炉缸侧壁环炭(标高8.151m)温度持续走高,最高达到720℃,理论计算炭砖残余厚度已不足400mm,高炉安全生产受到严重威胁.停炉大修时,采用炉缸快速浇注方案对炉缸炭砖及铁口泥包进行修复,从放残铁至烘炉共用时23天;开炉后,高炉3天达产达效,主要技术经济指标创历史最好水平.与传统炉缸采用炭砖+陶瓷杯砌筑方...  相似文献   

15.
对济钢3座1 750 m~3高炉一代炉役炉缸侵蚀情况进行了分析,扒炉过程中对炭砖残存厚度或重点部位炭砖残存厚度进行了实际测量,结果表明,3座高炉侵蚀最严重的位置都在铁口方向,但3座高炉炉缸的侵蚀情况不同,最大区别在于,2~#、3~#高炉都有较严重的环裂,并且环裂位置基本相同。分析认为,环裂与炭砖材质关系不大,与设计结构有关。提出可否降低炉底冷却水流量而增加炉缸冷却水流量以延缓炉缸侧壁侵蚀速度及改进炉缸结构设计等进一步探讨的问题。  相似文献   

16.
高炉炉缸安全是高炉长寿的主要限制环节,首钢股份公司环保限产期间对2号高炉进行了在不切割炉壳情况下的炉缸保护性清理和浇注修复施工。在此期间对高炉炉缸的破损情况进行了调研,研究了首钢股份公司 2 号高炉风口以下炉缸渣皮、风口区域、出铁口前泥包的状态和炉底陶瓷垫的侵蚀状况,并分析了造成炉缸炭砖侵蚀的原因及炉缸中钛和锌元素的物相。研究发现炉底陶瓷垫未形成锅底状侵蚀,越是靠近炉墙位置,陶瓷垫侵蚀越严重,说明了炉缸活跃度不够。而象脚区炭砖侵蚀主要是受铁、钾和硫等元素的渗透侵蚀;炉底象脚区域发现大量古铜色碳氮化钛沉积物,沉积物呈带状分布;破损炉缸中发现的大量ZnO富集物是黄绿色而非传统的白色。此次破损调研为后期炉缸浇注、高炉操作以及今后的炉缸设计提供现实可靠的依据,其意义重大。  相似文献   

17.
《炼铁》2014,(6)
重点阐述了鞍钢4号高炉炉缸侵蚀状况,认为炉缸2号铁口下方第2层环炭位置发生侵蚀,即"象脚"侵蚀,并向1号铁口区域发展,3号铁口也发生侵蚀。简要总结了护炉控制措施,如控制冶炼强度、含钛物料护炉、炉缸灌浆、增加炉缸监测设施、改进炉前操作等。  相似文献   

18.
为了查明凌钢3号高炉炉缸在炉役中侧壁砖衬温度高达900℃而二段热负荷大多低于10 000 W/m2的原因,通过传热学建模分析了炉缸传热和侵蚀的影响因素。采用可检测微小水温差波动的无线高精度数字化在线监测系统和吸附式无线炉皮测温系统,实现了对炉缸安全状态的准确监测。结果表明:炉缸侧壁热阻过大,尤其是炭砖和冷却壁间的填料层过厚是炉缸侵蚀加剧而水温差较低的主要原因,水速调整对"隔热"型炉缸侵蚀影响较小,稳定冶炼强度及改善炉缸透液性是抑制侵蚀的有效措施。  相似文献   

19.
《炼铁》2015,(4)
对略钢3号高炉内衬的破损状况与修复进行了总结。3号高炉生产仅4年半,内衬就出现严重破损,炉缸侧壁径向侵蚀最深处达到610咖,炉腹至炉身下部径向侵蚀最深处约456mm。为此,采用炉缸整体浇注技术对炉缸进行了修复,采用湿法喷注技术对炉腹以上部位进行了内衬再造。认为炉缸整体浇注技术,能快速有效地实现炉缸陶瓷杯恢复和铁口修复,以及替代风口组合砖。炉缸及炉腹以上部位内衬修复后,高炉运行稳定,生产指标逐步改善,达到了预期目的。  相似文献   

20.
《炼铁》2018,(4)
凌钢4号高炉投产不到1年因炉缸侧壁温度异常升高而进行护炉,为防止炉缸烧穿事故及时停炉更换炉缸炉底内衬,并进行了破损调查。破损调查结果表明,炭砖及炭捣料层导热系数低、气隙的存在、碱负荷高、锌负荷偏高,以及渣铁不能及时排净等因素的共同作用,造成了4号高炉炉缸严重的异常侵蚀。采用高导热系数的优质炭砖及炭捣料,并及时压力灌浆消除炭捣料冷热面气隙,以维持炉缸炭砖砌体综合导热能力,是避免炉缸炭砖过早严重侵蚀的努力方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号