首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly stable new electrochromic polymer, poly(1,4‐bis(2‐(3′,4′‐ethylenedioxy)thienyl)‐2‐methoxy‐5‐2″‐ethylhexyloxybenzene) (P(BEDOT‐MEHB)) was synthesized and its electrochemical and electrochromic properties are reported. P(BEDOT‐MEHB) showed a very well defined electrochemistry with a relatively low oxidation potential of the monomer at + 0.44 V versus Ag/Ag+, E1/2 at – 0.35 V versus Ag/Ag+ and stability to long‐term switching up to 5000 cycles. A high level of stability to over‐oxidation has also been observed as this material shows limited degradation of its electroactivity at potentials 1.4 V above its half‐wave potential. Spectroelectrochemistry showed that the absorbance of the π–π* transition in the neutral state is blue‐shifted compared to PEDOT, displaying a maximum at 538 nm (onset at 640 nm), thus giving an almost colorless, highly transparent oxidized polymer with a bandgap of 1.95 eV. Different colors observed at different oxidation levels and strong absorption in the near‐IR make this polymer a good candidate for several applications.  相似文献   

2.
Two donor‐acceptor systems, 4,7‐di‐2‐thienyl‐2,1,3‐benzoselenadiazole (TSeT) and 4,7‐di‐2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl‐2,1,3‐benzoselenadiazole (ESeE) are synthesized and electropolymerized to give polymers PTSeT and PESeE, respectively. One of the polymers, PTSeT, is blue‐green in the neutral state and soluble, exhibiting a deep‐red emission color. The other, PESeE, is the first 2,1,3‐benzoselenadiazole‐based neutral state green polymer with a narrow bandgap (1.04 eV). Furthermore, PESeE has superior and durable n‐ and p‐doping processes. Beyond the stability and the robustness, both of the polymer films exhibit multi‐electrochromic behavior.  相似文献   

3.
A newly synthesized high‐k polymeric insulator for use as gate dielectric layer for organic field‐effect transistors (OFETs) obtained by grafting poly(methyl methacrylate) (PMMA) in poly(vinylidene fluoride‐trifluoroethylene) (P(VDF‐TrFE)) via atom transfer radical polymerization transfer is reported. This material design concept intents to tune the electrical properties of the gate insulating layer (capacitance, leakage current, breakdown voltage, and operational stability) of the high‐k fluorinated polymer dielectric without a large increase in operating voltage by incorporating an amorphous PMMA as an insulator. By controlling the grafted PMMA percentage, an optimized P(VDF‐TrFE)‐g‐PMMA with 7 mol% grafted PMMA showing reasonably high capacitance (23–30 nF cm?2) with low voltage operation and negligible current hysteresis is achieved. High‐performance low‐voltage‐operated top‐gate/bottom‐contact OFETs with widely used high mobility polymer semiconductors, poly[[2,5‐bis(2‐octyldodecyl)‐2,3,5,6‐tetrahydro‐3,6‐dioxopyrrolo [3,4‐c]pyrrole‐1,4‐diyl]‐alt‐[[2,2′‐(2,5‐thiophene)bis‐thieno(3,2‐b)thiophene]‐5,5′‐diyl]] (DPPT‐TT), and poly([N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)) are demonstrated here. DPPT‐TT OFETs with P(VDF‐TrFE)‐g‐PMMA gate dielectrics exhibit a reasonably high field‐effect mobility of over 1 cm2 V?1 s?1 with excellent operational stability.  相似文献   

4.
A new high‐performing small molecule n‐channel semiconductor based on diketopyrrolopyrrole (DPP), 2,2′‐(5,5′‐(2,5‐bis(2‐ethylhexyl)‐3,6‐dioxo‐2,3,5,6‐tetrahydropyrrolo[3,4‐c]pyrrole‐1,4‐diyl)bis(thiophene‐5,2‐diyl))bis(methan‐1‐yl‐1‐ylidene)dimalononitrile (DPP‐T‐DCV), is successfully synthesized. The frontier molecular orbitals in this designed structure are elaborately tuned by introducing a strong electron‐accepting functionality (dicyanovinyl). The well‐defined lamellar structures of the crystals display a uniform terrace step height corresponding to a molecular monolayer in the solid‐state. As a result of this tuning and the remarkable crystallinity derived from the conformational planarity, organic field‐effect transistors (OFETs) based on dense‐packed solution‐processed single‐crystals of DPP‐T‐DCV exhibit an electron mobility (μe) up to 0.96 cm2 V?1 s?1, one of the highest values yet obtained for DPP derivative‐based n‐channel OFETs. Polycrystalline OFETs show promise (with an μe up to 0.64 cm2 V?1 s?1) for practical utility in organic device applications.  相似文献   

5.
Two regioisomeric D1‐A‐D‐A‐D1 type π‐conjugated molecules (1,4‐bis{5‐[4‐(5‐fluoro‐7‐(5‐hexylthiophen‐2‐yl)benzo[c ][1,2,5]thiadiazole)]­thiophen‐2‐yl}‐2,5‐bis(hexyldecyloxy)benzene (Prox‐FBT) and 1,4‐bis{5‐[4‐(6‐fluoro‐7‐(5‐hexylthiophen‐2‐yl)benzo[c ][1,2,5]thiadiazole)]­thiophen‐2‐yl}‐2,5‐bis(hexyldecyloxy)benzene (Dis‐FBT)) are synthesized, by controlling the fluorine topology to be proximal or distal relative to the central core. The different F geometries are confirmed by the 1H–1H nuclear Overhauer effect spectroscopy (NOESY). Clearly different optical, electrochemical, and thermal transition behaviors are obtained, i.e., stronger absorption, deeper valance band (by ≈0.2 eV), and higher melting/recrystallization temperatures (by 7–20 °C) are observed for Dis‐FBT. The different intermolecular packing and unit cell structures are also calculated for the two regioisomers, based on the powder X‐ray diffraction and 2D grazing‐incidence wide‐angle X‐ray diffraction measurements. A tighter π–π packing with a preferential monoclinic face‐on orientation is extracted for Dis‐FBT, compared to Prox‐FBT with bimodal orientations. Different topological structures significantly affect the electrical and photovoltaic properties, where Prox‐FBT shows higher parallel hole mobility (2.3 × 10?3 cm2 V?1 s?1), but Dis‐FBT demonstrates higher power conversion efficiency (5.47%) with a larger open‐circuit voltage of 0.95 V (vs 0.79 V for Prox‐FBT). The findings suggest that small changes in the topological geometry can affect the electronic structure as well as self‐assembly behaviors, which can possibly be utilized for fine‐adjusting the electrical properties and further optimization of optoelectronic devices.  相似文献   

6.
The recent emergence of organic electrochromics on both the scientific and industrial levels has expedited the synthesis of new materials with varied electrochemical and optical properties. The structural versatility and broad usage of poly(3,4‐ethylenedioxythiophene) (PEDOT) has stimulated many research groups to focus on the potential of PEDOT derivatives. Here we report the first synthesis of pentadecafluoro‐octanoic acid 2,3‐dihydro‐thieno(3,4‐b)(1,4)dioxin‐2‐ylmethylester (EDOT‐F), along with its electrochemical polymerization, characterization, and incorporation into electrochromic devices (ECDs). PEDOT‐F is a cathodically coloring polymer that exhibits sub‐second switching time between a dark‐blue neutral state and a transmissive sky‐blue oxidized state, and expresses a 63 % change for both transmittance at λmax and colorimetrically determined luminance. Hexafluorophosphate‐doped free‐standing films of PEDOT‐F possess conductivities of up to 65 S cm–1. Variable transmittance ECDs constructed with PEDOT‐F and poly[3,6‐bis(2‐(3,4‐ethylenedioxythienyl))‐N‐methylcarbazole] (PBEDOT‐NMeCz) exhibit an optical contrast of 60 % at λmax (580 nm) and an overall luminance change of 60 %. Indicating the hydrophobicity of this polymer, doped PEDOT‐F exhibits a water contact angle of 110°, significantly higher than the 30° exhibited for the doped PEDOT parent.  相似文献   

7.
A new electrontransport polymer, poly{[N,N′‐dioctylperylene‐3,4,9,10‐bis(dicarboximide)‐1,7(6)‐diyl]‐alt‐[(2,5‐bis(2‐ethyl‐hexyl)‐1,4‐phenylene)bis(ethyn‐2,1‐diyl]} (PDIC8‐EB), is synthesized. In chloroform, the polymer undergoes self‐assembly, forming a nanowire suspension. The nanowire's optical and electrochemical properties, morphological structure, and field‐effect transistor (FET) characteristics are investigated. Thin films fabricated from a PDIC8‐EB nanowire suspension are composed of ordered nanowires and ordered and amorphous non‐nanowire phases, whereas films prepared from a homogeneous PDIC8‐EB solution consist of only the ordered and amorphous non‐nanowire phases. X‐ray scattering experiments suggest that in both nanowires and ordered phases, the PDIC8 units are laterally stacked in an edge‐on manner with respect to the film plane, with full interdigitation of the octyl chains, and with the polymer backbones preferentially oriented within the film plane. The ordering and orientations are significantly enhanced through thermal annealing at 200 °C under inert conditions. The polymer film with high degree of structural ordering and strong orientation yields a high electron mobility (0.10 ± 0.05 cm2 V?1 s?1), with a high on/off ratio (3.7 × 106), a low threshold voltage (8 V), and negligible hysteresis (0.5 V). This study demonstrates that the polymer in the nanowire suspension provides a suitable material for fabricating the active layers of high‐performance n‐channel FET devices via a solution coating process.  相似文献   

8.
The device physics of bilayer polymer light emitting diodes containing either poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] or ladder‐type methyl‐poly(p‐phenylene) active layers have been determined. The active layer was consistent in thickness and general preparation whilst hole transporting layers spin cast from emeraldine base polyaniline protonated with camphorsulfonic acid, emeraldine base polyaniline protonated with 2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid, and emeraldine base polyaniline protonated with polystyrene sulfonated acid, in various ratios of polyaniline to counter ion, were used in order to determine how various spin‐processible polyaniline layers performed relative to a commercially available polystyrene sulfonated acid doped poly(3,4‐ethylenedioxythiophene layer. For poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] light‐emitting diodes we observe an improvement in performance when using emeraldine base polyaniline protonated with polystyrene sulfonated acid relative to poly(3,4‐ethylenedioxythiophene protonated with polystyrene sulfonated acid, with a maximum device external quantum efficiency of 0.6362 % at a current density of 20.18 mA/cm2.  相似文献   

9.
Facile one‐pot [1 + 1 + 2] and [2 + 1 + 1] syntheses of thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene (tetrathienoacene; TTA) semiconductors are described which enable the efficient realization of a new TTA‐based series for organic thin‐film transistors (OTFTs). For the perfluorophenyl end‐functionalized derivative DFP‐TTA , the molecular structure is determined by single‐crystal X‐ray diffraction. This material exhibits n‐channel transport with a mobility as high as 0.30 cm2V?1s?1 and a high on‐off ratio of 1.8 × 107. Thus, DFP‐TTA has one of the highest electron mobilities of any fused thiophene semiconductor yet discovered. For the phenyl‐substituted analogue, DP‐TTA , p‐channel transport is observed with a mobility as high as 0.21 cm2V?1s?1. For the 2‐benzothiazolyl (BS‐) containing derivative, DBS‐TTA , p‐channel transport is still exhibited with a hole mobility close to 2 × 10?3 cm2V?1s?1. Within this family, carrier mobility magnitudes are strongly dependent on the semiconductor growth conditions and the gate dielectric surface treatment.  相似文献   

10.
As a characteristic feature of conventional conjugated polymers, it has been generally agreed that conjugated polymers exhibit either high hole transport property (p‐type) or high electron transport property (n‐type). Although ambipolar properties have been demonstrated from specially designed conjugated polymers, only a few examples have exhibited ambipolar transport properties under limited conditions. Furthermore, there is, as yet, no example with ‘equivalent’ hole and electron transport properties. We describe the realization of an equivalent ambipolar organic field‐effect transistor (FET) by using a single‐component visible–near infrared absorbing diketopyrrolopyrrole (DPP)‐benzothiadiazole (BTZ) copolymer, namely poly[3,6‐dithiene‐2‐yl‐2,5‐di(2‐decyltetradecyl)‐pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5’,5’’‐diyl‐alt‐benzo‐2,1, 3‐thiadiazol‐4,7‐diyl] ( PDTDPP‐alt‐BTZ ). PDTDPP‐alt‐BTZ shows not only ideally balanced charge carrier mobilities for both electrons (?e = 0.09 cm2V?1s?1) and holes (?h = 0.1 cm2V?1s?1) but also its inverter constructed with the combination of two identical ambipolar FETs exhibits a gain of ~35 that is much higher than usually obtained values for unipolar logic.  相似文献   

11.
Polymer‐based electroactive materials have been studied and applied in energy storage systems as a valid replacement for transition metal oxides. As early as 1999, Hass et al. proposed an interesting concept on the possible incorporation of both charge storage and overcharge protection functionality into a single material. However, there are virtually no examples of polymeric materials that can not only store the charge, but also consume the overcharge current. Herein, a new material based on a cross‐linked polymer ( I ) with 2,5‐di‐tert‐butyl‐1,4‐dimethoxybenzene as the core structure is reported. The cyclic voltammogram of the synthesized polymer shows a single oxidation/reduction peak at 3.9–4.0 V. At 1C rate (56 mA/g), polymer I shows stable cycling up to 200 cycles with <10% capacity loss. The redox shuttle mechanism remarkably can be activated when cell voltage is elevated to 4.3 V and the overcharge plateau at 4.2 V (2nd plateau) is persistent for more than 100 hours. The overcharge protection was due to the release of a chemical redox shuttle species in the electrolyte during the initial charging process. Both DFT calculations and NMR analysis of the aromatic signals in the 1H‐NMR spectrum of electrolytes from “overcharged” cells provide evidence for this hypothesis.  相似文献   

12.
Polyphenol is electropolymerized on a Au electrode in the presence of N,N′‐dimethyl‐4,4′‐bipyridinium, methyl viologen, MV2+, to yield an imprinted film for MV2+. The association and dissociation of MV2+ to and from the imprinted sites is studied by electrochemical means and compared to the interactions of MV2+ with the non‐imprinted polymer. Donor‐acceptor interactions provide the driving force for the formation of the imprinted sites. The imprinted polymer reveals selectivity toward the association of MV2+, and the polymer‐bound MV2+ enables vectorial electron transfer between the electrode and redox label dissolved in the bulk electrolyte solution.  相似文献   

13.
Control of the threshold voltage and the subthreshold swing is critical for low voltage transistor operation. In this contribution, organic field-effect transistors (OFETs) operating at 1 V using ultra-thin (∼4 nm), self-assembled monolayer (SAM) modified aluminium oxide layers as the gate dielectric are demonstrated. A solution-processed donor–acceptor semiconducting polymer poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione)thieno[3,2-b]thiophene) (PDPP2TTT) is used as the active layer. It is shown that the threshold voltage of the fabricated transistors can be simply tuned by carefully controlling the composition of the applied SAM. The optimised OFETs display threshold voltages around 0 V, low subthreshold slopes (150 ± 5 mV/dec), operate with negligible hysteresis and show average saturated field-effect mobilities in excess of 0.1 cm2/V s at 1 V.  相似文献   

14.
The syntheses are reported of the title polymeric alkoxyPBD derivative 5 and the dipyridyl analogue 12 using Suzuki coupling reactions of 1,4‐dialkoxybenzene‐2,5‐diboronic acid with 2,5‐bis(4‐bromophenyl)‐1,3,5‐oxadiazole, and its dipyridyl analogue, respectively. Thermal gravimetric analysis shows that polymers 5 and 12 are stable up to 370 °C and 334 °C, respectively. Films of polymer 5 spun from chloroform solution show an absorption at λmax = 367 nm, and a weaker band at 312 nm, and strong blue photoluminescence at λmax = 444 nm. The photoluminescence quantum yield (PLQY) was found to be 27 ± 3 %. For polymer 12 , the absorption spectra reveal bands of equal intensity at λmax = 374 and 312 nm, with PL at λmax = 475 nm. Device studies using polymer 12 were hampered by its instability under illumination and/or electrical excitation. Polymer 5 is stable under these conditions and acts as an efficient electron‐transporting/hole‐blocking layer. For devices of configuration ITO/PEDOT/MEH‐PPV/polymer 5 /Al an external quantum efficiency of 0.26 % and brightness of 800 cd/m2 was readily achieved: orange emission was observed, identical to the MEH‐PPV electroluminescence.  相似文献   

15.
A donor‐π‐acceptor (D‐π‐A) alternative copolymer of carbazole and thieno[3,4b]‐pyrazine [P(CZ‐TPZ)] is synthesized through a Wittig–Horner reaction. In dilute THF solution, the absorption spectrum of P(CZ‐TPZ) shows two absorption peaks at 306 and 452 nm, respectively, and the PL spectrum of the polymer solution displays a PL peak maximum at 543 nm. The polymer possesses relatively high sensitivity and selectivity for Hg2+ detection. Upon addition of Hg2+ into its THF solution (containing 0.3% CH3CN), P(CZ‐TPZ) exhibits a new absorption peak at 560~600 nm and its emission was quenched dramatically. The Hg2+ detection shows high selectivity in comparison with the other cations of Na+, K+, Mg2+, Ba2+, Al3+, Cu2+, Cd2+, Pb2+, Ni2+, Mn2+, and Co2+. The Hg2+ detection limit of the polymer solution by emission quenching is found to be 1 × 10?7 mol L?1. P(CZ‐TPZ) also shows a selective chromogenic behavior toward Hg2+ with color change of the solution from yellow to blue dark which can be detected with the naked eye, the detection limit reaches 1 × 10?6 mol L?1 with a 1 × 10?4 mol L?1 polymer solution. The absorption and PL spectral change can be resumed after adding thiourea, therefore the sensing ability of the polymer is re‐usable with the treatment of thiourea. The results indicate that P(CZ‐TPZ) is a promising chemosensor for the Hg2+ detection.  相似文献   

16.
Ambipolar charge transport in a solution‐processed small molecule 4,7‐bis{2‐[2,5‐bis(2‐ethylhexyl)‐3‐(5‐hexyl‐2,2′:5′,2″‐terthiophene‐5″‐yl)‐pyrrolo[3,4‐c]pyrrolo‐1,4‐dione‐6‐yl]‐thiophene‐5‐yl}‐2,1,3‐benzothiadiazole (BTDPP2) transistor has been investigated and shows a balanced field‐effect mobility of electrons and holes of up to ~10?2 cm2 V?1 s?1. Using low‐work‐function top electrodes such as Ba, the electron injection barrier is largely reduced. The observed ambipolar transport can be enhanced over one order of magnitude compared to devices using Al or Au electrodes. The field‐effect mobility increases upon thermal annealing at 150 °C due to the formation of large crystalline domains, as shown by atomic force microscopy and X‐ray diffraction. Organic inverter circuits based on BTDPP2 ambipolar transistors display a gain of over 25.  相似文献   

17.
Poly(2,7-bis (2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9H-fluorene) (P(EDOT-FE)), a novel electrochromic material obtained from 3,4-ethylenedioxythiophene (EDOT) bis-substituted fluorene (FE) in CH2Cl2 solution, and its applications in electrochromic devices (ECD) are discussed. The external EDOT units will not only function as donor groups but also lower the oxidation potential. Fluorescent spectral studies indicate that P(EDOT-FE) with high fluorescence quantum yields and photochemical stability is a novel green-light-emitter. P(EDOT-FE) is switched between brown in the reduced state and blue in the oxidized state. ECD based on P(EDOT-FE) and poly(3,4-ethylenedioxythiophene) (PEDOT) was also fabricated and showed a good electrochromic performance. The ECD constructed by P(EDOT-FE) and PEDOT has good optical contrast (36% at 625 nm), high coloration efficiency (784 cm2 C−1), fast response time (0.5 s at 625 nm), better optical memory and long-term stability. Clear change from dark red (neutral) to dark blue color (oxidized) of ECD is demonstrated with robust cycle life. These results provide an avenue for applications of PEDOT family in electrochromic devices.  相似文献   

18.
Silaindacenodithiophene is copolymerized with benzo[c][1,2,5]thiadiazole ( BT ) and 4,7‐di(thiophen‐2‐yl)benzo[c][1,2,5]thiadiazole ( DTBT ), respectively their fluorinated counter parts 5,6‐difluorobenzo[c][1,2,5]thiadiazole ( 2FBT ) and 5,6‐difluoro‐4,7‐di(thiophen‐2‐yl) benzo[c][1,2,5]thiadiazole ( 2FDTBT ). The influence of the thienyl spacers and fluorine atoms on molecular packing and active layer morphology is investigated with regard to device performances. bulk heterojunction (BHJ) solar cells based on silaindacenodithiophene donor‐acceptor polymers achieved PCE's of 4.5% and hole mobilities of as high as 0.28 cm2/(V s) are achieved in an organic field‐effect transistor (OFET).  相似文献   

19.
With the aim of enhancing the field‐effect mobility by promoting surface‐mediated two‐dimensional molecular ordering in self‐aligned regioregular poly(3‐hexylthiophene) (P3HT) we have controlled the intermolecular interaction at the interface between P3HT and the insulator substrate by using self‐assembled monolayers (SAMs) functionalized with various groups (–NH2, –OH, and –CH3). We have found that, depending on the properties of the substrate surface, the P3HT nanocrystals adopt two different orientations—parallel and perpendicular to the insulator substrate—which have field‐effect mobilities that differ by more than a factor of 4, and that are as high as 0.28 cm2 V–1 s–1. This surprising increase in field‐effect mobility arises in particular for the perpendicular orientation of the nanocrystals with respect to the insulator substrate. Further, the perpendicular orientation of P3HT nanocrystals can be explained by the following factors: the unshared electron pairs of the SAM end groups, the π–H interactions between the thienyl‐backbone bearing π‐systems and the H (hydrogen) atoms of the SAM end groups, and interdigitation between the alkyl chains of P3HT and the alkyl chains of the SAMs.  相似文献   

20.
A series of dicyanomethylene‐substituted 2,5‐di(thiophen‐2‐yl)thieno[3,2‐b]thieno‐quinoids, in which soluble alkyl chains (2‐decyltetradecyls) are substituted at different positions (namely, 2,2′‐positions (Compound 1 ); 3,3′‐ positions (Compound 2 ); 6,6′‐positions (Compound 3 )), are strategically designed and successfully synthesized. The photophysical and electrochemical properties as well as molecular packing of these new compounds are thoroughly investigated. Thin film transistor measurements reveal that Compounds 1–3 display markedly different charge transport performance. The solution processed thin film transistors of Compound 2 exhibits the highest electron mobility of up to 0.22 cm2 V?1 s?1 under ambient conditions, one and three orders of magnitude higher than those of Compounds 3 and 1, respectively, demonstrating the strong impact of alkyl chain orientations on transistor performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号