首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.  相似文献   

2.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human gammaherpesvirus 8 (HHV-8), contains oncogenes and proteins that modulate various cellular functions, including proliferation, differentiation, survival, and apoptosis, and is integral to KSHV infection and oncogenicity. In this review, we describe the most important KSHV genes [ORF 73 (LANA), ORF 72 (vCyclin), ORF 71 or ORFK13 (vFLIP), ORF 74 (vGPCR), ORF 16 (vBcl-2), ORF K2 (vIL-6), ORF K9 (vIRF 1)/ORF K10.5, ORF K10.6 (vIRF 3), ORF K1 (K1), ORF K15 (K15), and ORF 36 (vPK)] that have the potential to induce malignant phenotypic characteristics of Kaposi’s sarcoma. These oncogenes can be explored in prospective studies as future therapeutic targets of Kaposi’s sarcoma.  相似文献   

3.
Podoplanin is a sialomucin-like type I transmembrane receptor glycoprotein that is expressed specifically in lymphatic vessels, sebaceous glands, and hair follicles in normal skin. However, under pathological conditions podoplanin expression is upregulated in various cells, such as keratinocytes, fibroblasts, tumor cells, and inflammatory cells, and plays pivotal roles in different diseases. In psoriasis, podoplanin expression is induced in basal keratinocytes via the JAK-STAT pathway and contributes toward epidermal hyperproliferation. Podoplanin expression on keratinocytes can also promote IL-17 secretion from lymphocytes, promoting chronic inflammation. During wound healing, the podoplanin/CLEC-2 interaction between keratinocytes and platelets regulates re-epithelialization at the wound edge. In skin cancers, podoplanin expresses on tumor cells and promotes their migration and epithelial-mesenchymal transition, thereby accelerating invasion and metastasis. Podoplanin is also expressed in normal peritumoral cells, such as cancer-associated fibroblasts in melanoma and keratinocytes in extramammary Paget’s disease, which promote tumor progression and predict aggressive behavior and poor prognosis. This review provides an overview of our current understanding of the mechanisms via which podoplanin mediates these pathological skin conditions.  相似文献   

4.
Epigenetic changes influence various physiological and pathological conditions in the human body. Recent advances in epigenetic studies of the skin have led to an appreciation of the importance of epigenetic modifications in skin diseases. Cutaneous sarcomas are intractable skin cancers, and there are no curative therapeutic options for the advanced forms of cutaneous sarcomas. In this review, we discuss the detailed molecular effects of epigenetic modifications on skin sarcomas, such as dermatofibrosarcoma protuberans, angiosarcoma, Kaposi’s sarcoma, leiomyosarcoma, and liposarcoma. We also discuss the application of epigenetic-targeted therapy for skin sarcomas.  相似文献   

5.
6.
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer’s disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.  相似文献   

7.
Non-melanoma skin cancer (NMSC) is the most common form of cancer in the Caucasian population. Among NMSC types, basal cell carcinoma (BCC) has the highest incidence and squamous cell carcinoma (SCC) is less common although it can metastasize, accounting for the majority of NMSC-related deaths. Treatment options for NMSC include both surgical and non-surgical modalities. Even though surgical approaches are most commonly used to treat these lesions, Photodynamic Therapy (PDT) has the advantage of being a non-invasive option, and capable of field treatment, providing optimum cosmetic outcomes. Numerous clinical research studies have shown the efficacy of PDT for treating pre-malignant and malignant NMSC. However, resistant or recurrent tumors appear and sometimes become more aggressive. In this sense, the enhancement of PDT effectiveness by combining it with other therapeutic modalities has become an interesting field in NMSC research. Depending on the characteristics and the type of tumor, PDT can be applied in combination with immunomodulatory (Imiquimod) and chemotherapeutic (5-fluorouracil, methotrexate, diclofenac, or ingenol mebutate) agents, inhibitors of some molecules implicated in the carcinogenic process (COX2 or MAPK), surgical techniques, or even radiotherapy. These new strategies open the way to a wider improvement of the prevention and eradication of skin cancer.  相似文献   

8.
Based on the rapid increase in incidence of inflammatory bowel disease (IBD), the identification of susceptibility genes and cell populations contributing to this condition is essential. Previous studies suggested multiple genes associated with the susceptibility of IBD; however, due to the analysis of whole-tissue samples, the contribution of individual cell populations remains widely unresolved. Single-cell RNA sequencing (scRNA-seq) provides the opportunity to identify underlying cellular populations. We determined the enrichment of Crohn’s disease (CD)-induced genes in a publicly available Crohn’s disease scRNA-seq dataset and detected the strongest induction of these genes in innate lymphoid cells (ILC1), highly activated T cells and dendritic cells, pericytes and activated fibroblasts, as well as epithelial cells. Notably, these genes were highly enriched in IBD-associated neoplasia, as well as sporadic colorectal cancer (CRC). Indeed, the same six cell populations displayed an upregulation of CD-induced genes in a CRC scRNA-seq dataset. Finally, after integrating and harmonizing the CD and CRC scRNA-seq data, we demonstrated that these six cell types display a gradual increase in gene expression levels from a healthy state to an inflammatory and tumorous state. Together, we identified cell populations that specifically upregulate CD-induced genes in CD and CRC patients and could, therefore, contribute to inflammation-associated tumor development.  相似文献   

9.
Extramammary Paget’s disease (EMPD) is a rare skin cancer arising in the apocrine gland-rich areas. Most EMPD tumors are dormant, but metastatic lesions are associated with poor outcomes owing to the lack of effective systemic therapies. Trophoblast cell surface antigen 2 (Trop2), a surface glycoprotein, has drawn attention as a potential therapeutic target for solid tumors. Sacituzumab govitecan, an antibody–drug conjugate of Trop2, has recently entered clinical use for the treatment of various solid cancers. However, little is known about the role of Trop2 in EMPD. In this study, we immunohistochemically examined Trop2 expression in 116 EMPD tissue samples and 10 normal skin tissues. In normal skin, Trop2 was expressed in the epidermal keratinocytes, inner root sheaths, and infundibulum/isthmus epithelium of hair follicles, eccrine/apocrine glands, and sebaceous glands. Most EMPD tissues exhibited homogeneous and strong Trop2 expression, and high Trop2 expression was significantly associated with worse disease-free survival (p = 0.0343). These results suggest the potential use of Trop2-targeted therapy for EMPD and improve our understanding of the skin-related adverse effects of current Trop2-targeted therapies such as sacituzumab govitecan.  相似文献   

10.
Epstein–Barr Virus (EBV) and Kaposi’s sarcoma associated-herpesvirus (KSHV) are γ-herpesviruses that belong to the Herpesviridae family. EBV infections are linked to the onset and progression of several diseases, such as Burkitt lymphoma (BL), nasopharyngeal carcinoma (NPC), and lymphoproliferative malignancies arising in post-transplanted patients (PTDLs). KSHV, an etiologic agent of Kaposi’s sarcoma (KS), displays primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). Many therapeutics, such as bortezomib, CHOP cocktail medications, and natural compounds (e.g., quercetin or curcumin), are administrated to patients affected by γ-herpesvirus infections. These drugs induce apoptosis and autophagy, inhibiting the proliferative and cell cycle progression in these malignancies. In the last decade, many studies conducted by scientists and clinicians have indicated that nanotechnology and nanomedicine could improve the outcome of several treatments in γ-herpesvirus-associated diseases. Some drugs are entrapped in nanoparticles (NPs) expressed on the surface area of polyethylene glycol (PEG). These NPs move to specific tissues and exert their properties, releasing therapeutics in the cell target. To treat EBV- and KSHV-associated diseases, many studies have been performed in vivo and in vitro using virus-like particles (VPLs) engineered to maximize antigen and epitope presentations during immune response. NPs are designed to improve therapeutic delivery, avoiding dissolving the drugs in toxic solvents. They reduce the dose-limiting toxicity and reach specific tissue areas. Several attempts are ongoing to synthesize and produce EBV vaccines using nanosystems.  相似文献   

11.
12.
13.
Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.  相似文献   

14.
15.
Parkinson’s disease is the second most common neurodegenerative disease. Insidious and progressive, this disorder is secondary to the gradual loss of dopaminergic signaling and worsening neuroinflammation, affecting patients’ motor capabilities. Gold standard treatment includes exogenous dopamine therapy in the form of levodopa–carbidopa, or surgical intervention with a deep brain stimulator to the subcortical basal ganglia. Unfortunately, these therapies may ironically exacerbate the already pro-inflammatory environment. An alternative approach may involve cell-based therapies. Cell-based therapies, whether endogenous or exogenous, often have anti-inflammatory properties. Alternative strategies, such as exercise and diet modifications, also appear to play a significant role in facilitating endogenous and exogenous stem cells to induce an anti-inflammatory response, and thus are of unique interest to neuroinflammatory conditions including Parkinson’s disease. Treating patients with current gold standard therapeutics and adding adjuvant stem cell therapy, alongside the aforementioned lifestyle modifications, may ideally sequester inflammation and thus halt neurodegeneration.  相似文献   

16.
Cervical cancer (CC) continues to be a major public health problem in Mexico, ranking second among cancers in women. A persistent infection with human papillomaviruses (HPV) is the main risk factor for CC development. In addition, a significant fraction of other cancers including those of the anus, oropharynx, and penis are also related to HPV infection. In CC, HPV-16 is the most prevalent high-risk HPV type, followed by HPV-18, both being responsible for 70% of cases. HPV intratype variant lineages differ in nucleotide sequences by 1–10%, while sublineages differ by 0.5–1%. Several studies have postulated that the nucleotide changes that occur between HPV intratype variants are reflected in functional differences and in pathogenicity. Moreover, it has been demonstrated that HPV-16 and -18 intratype variants differentially affect molecular processes in infected cells, changing their biological behavior that finally impacts in the clinical outcome of patients. Mexico has participated in providing knowledge on the geographical distribution of intratype variants of the most prevalent HPVs in premalignant lesions of the cervix and cervical cancer, as well as in other HPV-related tumors. In addition, functional studies have been carried out to assess the cellular effects of intratype variations in HPV proteins. This review addresses the state of the art on the epidemiology of HPV-16 and HPV-18 intratype variants in the Mexican population, as well as their association with persistence, precancer and cervical cancer, and functional aspects related to their biological behavior.  相似文献   

17.
18.
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.  相似文献   

19.
Cell adhesion ability is one of the components to establish cell organization and shows a great contribution to human body construction consisting of various types of cells mixture to orchestrate tissue specific function. The cell adhesion molecule 1 (CADM1) is a molecule of cell adhesion with multiple functions and has been identified as a tumor suppressor gene. CADM1 has multifunctions on the pathogenesis of malignancies, and other normal cells such as immune cells. However, little is known about the function of CADM1 on cutaneous cells and cutaneous malignancies. CADM1 plays an important role in connecting cells with each other, contacting cells to deliver their signal, and acting as a scaffolding molecule for other immune cells to develop their immune responses. A limited number of studies reveal the contribution of CADM1 on the development of cutaneous malignancies. Solid cutaneous malignancies, such as cutaneous squamous cell carcinoma and malignant melanoma, reduce their CADM1 expression to promote the invasion and metastasis of the tumor. On the contrary to these cutaneous solid tumors except for Merkel cell carcinoma, cutaneous lymphomas, such as adult-T cell leukemia/lymphoma, mycosis fungoides, and Sézary syndrome, increase their CADM1 expression for the development of tumor environment. Based on the role of CADM1 in the etiology of tumor development, the theory of CADM1 contribution will desirably be applied to skin tumors according to other organ malignancies, however, the characteristics of skin as a multicomponent peripheral organ should be kept in mind to conclude their prognoses.  相似文献   

20.
Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are also regarded as potential pharmaceutical compounds and there is mounting experimental data that either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to modulate intracellular antioxidant systems and also inflammation and cell death-related pathways. Therefore, our aim was to review current studies on the distribution of ursolic and oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and their derivatives, and to discuss their neuroprotective effects in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号