首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Dong-Wook Kim  Kyung-Woong Kim 《Wear》2013,297(1-2):722-730
Friction and wear tests were performed to investigate effects of sliding velocity and normal load on tribological characteristics of a multi-layered diamond-like carbon (DLC) coating for machine elements. The DLC coatings which consist of sequentially deposited gradient Cr/CrN, W-doped DLC (a-C:H:W) and DLC (a-C:H) layers were formed on carburized SCM 415 Cr–Mo steel disks using a reactive sputtering system. The tests against AISI 52100 steel balls were performed under various sliding velocities (0.0625, 0.125, 0.25, 0.5, 1 and 2 m/s) and normal loads (6.1, 20.7 and 49.0 N) in ambient air (relative humidity=26±2%, temperature=18±2 °C). Each test was conducted for 20 km sliding distance without lubricating oil. The results show that friction coefficients decrease with the increase in sliding velocity and normal load. Wear rates of both surfaces decrease with the increase in normal load. The increase in sliding velocity leads initially to the increase in wear rates up to the maximum value. Then, they decrease, as the sliding velocity increases above specific value that corresponds to the maximum wear rate. Through surface observation and analysis, it is confirmed that formation of transfer layers and graphitized degree of wear surfaces of DLC coatings mainly affect its tribological characteristics.  相似文献   

2.
《Wear》2006,260(4-5):351-360
α-Fe(Cr)-h-BN and α-Fe(Cr)-Fe2B-FeB coatings on X30Cr13 stainless steel are synthesized by laser melting with incorporation of hexagonal boron nitride, or by alloying of boron. The additive powders are deposited on steel before pulsed irradiation by Nd-YAG laser beam. The solidification structures of the obtained coatings are investigated by optical microscopy and X-ray diffractometry. The mechanical properties are investigated by nanoindentation and the tribological behaviour is characterized on pin-on-disc tribometer, under dry-sliding conditions with different loads and a temperature range 25–500 °C. h-BN-α-Fe(Cr) and Fe2B-α-Fe(Cr) coatings have average hardnesses 10.0 and 14.5 GPa, respectively, while hardness of untreated stainless steel is 4.2 GPa. In comparison with this untreated steel, the sliding contact on ceramic (ruby) of such coating shows a lower coefficient friction and a definitively better wear resistance.  相似文献   

3.
Andrzej Czyzniewski 《Wear》2012,274(1-2):547-557
Friction and wear behaviors of W–C:H coatings with different tungsten contents sliding against bearing steel balls at different air humidities were investigated. The worn out surfaces of steel balls and coatings were analyzed with the aid of scanning electron microscopy (SEM) and Raman spectroscopy. A tribolayer composed of a graphite-like material mixed with tungsten and iron oxides was observed on the friction surfaces of the steel balls. The chemical and phase compositions of the tribolayer, which depend both on the tungsten content in coatings and air humidity, determine the tribological properties of the W–C:H coating in a frictional contact with bearing steel. At average air humidity (50%), those coatings that contain less than 10 at% of tungsten in a frictional contact with steel exhibit favorable tribological properties. The friction coefficient of frictional contacts under test reaches a low value (f~0.01) at a low air humidity and increases with humidity of up to ca. 0.2. The best tribological properties in a wide range of air humidity (5–90%) have been found for W–C:H coatings with the tungsten content between 2 and 5 at%.  相似文献   

4.
In this study, Fe–X at% Si alloy (X=70.5, 80.0 and 96.0), Re–64.3 at% Si and Mo–66.7 at% Si disk specimens were prepared by spark plasma sintering, and their friction and wear properties were investigated when they were slid against Si3N4 ball specimens in ethyl alcohol. The friction and wear properties of Si ingots were also examined. Fe–70.5 at% Si, Fe–80.0 at% Si, Fe–96.0 at% Si and Re–64.3 at% Si disk specimens exhibited friction coefficients as low as 0.15. It is considered that the low friction of the Fe–70.5 at% Si, Fe–80.5 at% Si and Fe–96.0 at% Si disk specimens was due to the formation of low friction silicon alkoxide and polyoxysilane on the worn surfaces of the disk specimens and the paired ball specimens. Re–64.3 at% Si disk specimens exhibited the highest microvickers hardness of all the disk specimens prepared in this study. In addition, the microvickers hardness of the Fe–X at% Si (X=70.5, 80.0, 96.0 and 100) disk specimen increased with increasing the Si content. Moreover, it was difficult to obtain dense Fe–90.0 at% Si disk specimens by sintering the annealed and crushed Fe–90.0 at% Si powder. However, dense Fe–96.0 at% Si disk specimens could be obtained by sintering the Fe–90.0 at% Si powder at 1403 K.  相似文献   

5.
A block-on-slip ring-type wear tester was used to investigate the tribological behavior of copper-impregnated metallized carbon against a Cu–Cr–Zr alloy under 2 to 6 N applied load and 0 to 20 A electrical current. The sliding speed was maintained at 25 km/h. The wear loss of copper-impregnated metallized carbon increased with greater electrical current. Under a certain applied load, the wear loss with electrical current was minimized. The tribo-layer had an apparent effect on the friction coefficient. The wear mechanisms were complex, consisting of adhesive wear, abrasive wear and arc erosion.  相似文献   

6.
《Wear》2007,262(5-6):655-665
The structure, hardness, friction and wear of tungsten nitrides prepared by d.c. reactive magnetron sputtering were investigated. The coatings were deposited with different nitrogen to argon ratios; the total pressure was kept constant. The tribological tests were performed on a pin-on-disc tribometer in terrestrial atmosphere with 100Cr6 steel, Al2O3 and Si3N4 balls as sliding counter-bodies. The wear tracks, the ball-wear scars and the wear debris were analysed by scanning electron microscopy in order to characterize the dominant wear mechanisms.The coatings exhibited different phases as a function of the nitrogen content: films with low N content exhibited the α-W phase; β-W phase was dominant for nitrogen contents from 12 to 15 at.% and β-W2N was observed for nitrogen content higher that 30 at.%. The mechanical and tribological properties of the tungsten nitride coatings were strongly influenced by the structure. The hardness and the Young's modulus values were in the ranges (29–39 GPa) and (300–390 GPa), respectively; the lowest values correspond to the coatings with the highest nitrogen content. Generally, the friction and wear rate of tungsten nitride coatings sliding against ceramic balls increased with nitrogen content reaching a maximum at 12 at.%; further increase of the nitrogen content led to a decrease of the friction and wear. The sliding with the steel balls did not wear the coatings under the selected testing conditions.  相似文献   

7.
《Wear》2006,260(1-2):40-49
The tribological behaviour of TiCN coating prepared by unbalanced magnetron sputtering is studied in this work. The substrates made from austenitic steel were coated by TiCN coatings during one deposition. The measurements were provided by high temperature tribometer (pin-on-disc, CSM Instruments) allowing measuring the dependency of friction coefficient on cycles (sliding distance) up to 500 °C. The evolution of the friction coefficient with the cycles was measured under different conditions, such as temperature or sliding speed and the wear rate of the ball and coating were evaluated. The 100Cr6 balls and the Si3N4 ceramic balls were used as counter-parts. The former were used at temperatures up to 200 °C, the latter up to 500 °C. The wear tracks were examined by optical methods and SEM. The surface oxidation at elevated temperatures and profile elements composition of the wear track were also measured.The experiments have shown considerable dependency of TiCN tribological parameters on temperature. Rise in temperature increased both friction coefficient and the wear rate of the coating in case of 100Cr6 balls. The main wear mechanism was a mild wear at temperatures up to 200 °C; fracture and delamination were dominating wear mechanisms at temperatures from 300 to 500 °C.  相似文献   

8.
《Wear》2002,252(3-4):227-239
In this paper, the action of the zinc dialkyl dithiophosphate (ZDDP) anti-wear additive has been examined on two different materials (Steel AISI 52100 and a Co/Cr/Mo thermal spray coating) sliding against cast iron in reciprocating mode. Tests have been conducted under lubricated wear conditions at relatively low (20, 50 °C) and elevated (up to 100 °C) bulk oil temperatures. A comparison is made between the friction, wear and chemical nature of the wear film formed under varying temperatures, on two materials, in two lubricants (one free from and one containing ZDDP) and after different test durations. The wear film has been examined by energy dispersive X-ray analysis (EDAX) and X-ray photoelectron spectroscopy (XPS).In this work, it has been shown in this work that the friction coefficient is dependent on the temperature, the lubricant and the nature of the contacting surfaces. In the presence of ZDDP, a wear film, comprising Zn, S and P, forms even at the lowest bulk oil temperature of 20 °C. The nature of the film is dependent on the substrate material and the steel and Co/Cr/Mo coating showed contrasting film characteristics. In this paper, the wear and friction results for each couple in oil containing and free from additives is discussed with reference to the nature of the wear film. A correlation has been made between the wear, friction and chemical analysis measurements.  相似文献   

9.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

10.
The tribological properties of Ni-17.5Si-29.3Cr alloy against Si3N4 were studied on a ball-on-disc tribotester between room temperature and 1000 °C. The effects of temperature on the tribological properties of the alloy were investigated. The worn surfaces of the alloy were examined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicated that the tribological behavior of the alloy expressed some differences with increase in testing temperature. At low and moderate temperatures (below 800 °C), the alloy showed excellent wear and oxidation resistances, and the wear rate of the alloy remained in the magnitude of 10?5 mm3/Nm; but at elevated temperature (800–1000 °C), the wear and oxidation resistances decreased, and the wear rate of the alloy increased up to 10?4 mm3/Nm. The friction coefficient decreased from 0.58 to 0.46 with the rising of testing temperature from 20 to 600 °C, and then remained nearly constant. The wear mechanism of the alloy was mainly fracture and delamination at low and moderate temperatures, and transformed to adhesive and oxidation at elevated temperatures.  相似文献   

11.
Nickel aluminide (NiAl) intermetallic compound coatings were in situ synthesized from pre-placed mixed powders of Ni and Al by laser cladding. The phase composition and microstructure of the NiAl coatings were studied by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The effects of laser cladding parameters on the microstructure and friction and wear behavior of the NiAl coatings were investigated. It has been found that laser power density had a crucial influence on the microstructure and friction and wear behavior of NiAl coatings. Namely, the NiAl coatings synthesized under a lower power density have more dense and fine microstructure, and lower friction coefficient and wear rate. Besides, the friction and wear behavior of the laser cladding NiAl coatings is highly dependent on applied normal load and sliding speed; and the resulting coatings sliding against Si3N4 in a ball-on-disc contact mode is more suitable for tribological application at a moderate normal load of 3–7 N and sliding speed of 0.16–0.21 m/s.  相似文献   

12.
Hardmetal coatings prepared by high velocity oxy-fuel (HVOF) spraying represent an advanced solution for surface protection against wear. In the current systematic study the high-temperature oxidation and unidirectional sliding wear in dry and lubricated conditions were studied. Results for a series of experiments on self-mated pairs in dry conditions as part of that work are described in this paper. Coatings with nominal compositions WC-10%Co4%Cr, WC-(W,Cr)2C-7%Ni, Cr3C2-25%NiCr, (Ti,Mo)(C,N)-29%Ni and (Ti,Mo)(C,N)-29%Co were prepared with an ethylene-fuelled DJH 2700 HVOF spray gun. Electrolytic hard chromium (EHC) coatings and bulk (Ti,Mo)(C,N)-15%NiMo (TM10) hardmetal specimens were studied for comparison. The wear behaviour was investigated at room temperature, 400 and 600 °C. For the coatings sliding speeds were varied in the range 0.1–1 m/s for a wear distance of 5000 m and a normal force of 10 N. In some cases the WC- and (Ti,Mo)(C,N)-based coatings showed total wear rates (sum of wear rates of the rotating and stationary samples) of less than 10?6 mm3/Nm, i.e., comparable to values typically measured under mixed/boundary conditions. Coefficients of friction above 0.4 were found for all test conditions. The P × V values as an engineering parameter for coating application are discussed. The microstructures and the sliding wear behaviour of the (Ti,Mo)(C,N)-based coatings and the (Ti,Mo)(C,N)-15%NiMo hardmetal are compared.  相似文献   

13.
In the present paper, friction and wear behaviors of a carbon fiber reinforced carbon–silicon carbide–titanium silicon carbide (C-SiC–Ti3SiC2) hybrid matrix composites fabricated by slurry infiltration and liquid silicon infiltration were studied for potential application as brake materials. The properties were compared with those of C/C-SiC composites. The composites containing Ti3SiC2 had not only higher friction stability coefficient but also much higher wear resistance than C/C-SiC composites. At an initial braking speed of 28 m/s under 0.8 MPa pressure, the weight wear rate of the composites containing 5 vol% Ti3SiC2 was 5.55 mg/cycle, which was only one-third of C/C-SiC composites. Self-lubricious film-like debris was formed on the composites containing Ti3SiC2, leading to the improvement of friction and wear properties. The effect of braking speed and braking pressure on the tribological properties of modified composites were investigated. The average friction coefficient was significantly affected by braking speed and braking pressure, but the wear rate was less affected by braking pressure.  相似文献   

14.
《Wear》2007,262(7-8):868-875
The Ni-based surface coatings were prepared by a vacuum infiltration casting technique on copper substrate. The surface coatings were fabricated through copper melt penetrating into thin preforms whose thickness could change. By optimizing the processing parameters, compact surface coatings were achievable as confirmed through SEM observation. The surface coating was mainly composed of solid solution of Ni, solid solution of Cu and CrB. The macro-hardness of the coating was about HRC 58, and the micro-hardness of the coating shows a gradient distribution. The average micro-hardness of the coating was about HV450. Wear behaviour was investigated by using block-on-ring dry sliding linear contact at several loads (50 N–300 N) and two different sliding speeds (0.424 m/s and 0.848 m/s). Wear rate and friction coefficient were estimated using a method founded upon the PV factor theory. The surface oxidation predominated as the principle wear mechanism at low load. Meanwhile, adhesion and oxidation mechanism were observed when the coatings were tested at higher load more than 200 N. Friction coefficient decreased with increasing load and sliding speed.  相似文献   

15.
《Wear》2006,260(4-5):469-478
Different diamond-like carbon (DLC) coatings on a steel substrate (100Cr6) were tested under slip-rolling friction conditions against uncoated counter bodies of the same steel. The initial maximum Hertzian pressure was varied in a range of P0 = 1.5–2.3 GPa. The friction tests were carried out under dry conditions and with an unadditivated paraffin oil as lubricant. It could be shown that the thickness of the coatings affects the respective wear life. Further, a very important factor for the wear life of a coating under lubricated slip-rolling conditions is the roughness of the surface of the respective counterbody. The wear life tests were monitored by recording in situ the Acoustic Emission (AE) signals. Some causes for a high AE activity could be identified.  相似文献   

16.
《Wear》2006,260(1-2):123-127
In this research, the wear of electroless Ni–P and Ni–P–B4C composite coatings was reviewed. Auto catalytic reduction of Ni in nickel sulfate and sodium hypophosphate bath including suspended B4C particles with different concentration was used to create composite coatings with 12, 18, 25 and 33 vol.% of B4C particles. Coatings 35 μm thick were heat treated at 400 °C for one hour in an argon atmosphere and the wear resistance and friction coefficient of heat-treated samples were determined by block-on-ring tests. All wear tests were carried out at 24 °C, 35% moisture, 0.164 m/s sliding speed and about 1000 m sliding distance. Graphs show that an electroless Ni–P–B4C composite coating with 25 vol.% of B4C had the best wear resistance against a CK45 steel counterface.  相似文献   

17.
《Wear》2002,252(11-12):1007-1015
Boriding of the surface of a tool steel using boron powder and the plasma transferred arc process was investigated. It was shown that this method is an easy and effective technique in producing uniform alloyed layers with a thickness of about 1.5 mm and a hardness between 1000 and 1300 HV.The microstructure of the borided surfaces consists of primary Fe2B-type borides and a eutectic mixture of borides and martensite. Some cracks are observed in the eutectic regions but they do not seem to critically affect the behaviour of the coatings in sliding wear.The wear rate of pin on disc tests is primarily affected by the applied load and it lies between 10−5 mm3/m for low loads and 10−2 mm3/m for high loads. Two distinct regimes of mild and severe wear are obtained separated by a critical load. Mild wear is due to the load supporting effect of borides and severe wear is due to their breakage above a critical load. The wear rate is not significantly affected by the sliding velocity and is consistent with the friction coefficient.The friction coefficient varies from 0.13 to 0.23 and depends strongly on the oxidation status of the wear track. The sliding velocity affects the sliding distance where the coefficient of friction reaches equilibrium.  相似文献   

18.
《Wear》2007,262(3-4):350-361
In this work, the tribological properties of deproteinised natural rubber (DPNR) were examined and compared with synthetic cis-1,4-polyisoprene rubber (IR), namely Natsyn 2200. The effect of adding carbon black (CB) (0, 25 and 50 phr) to both DPNR and IR on the friction and wear characteristics was investigated. Dry abrasion tests were carried out using pin-on-cylinder tribometer with abrasive paper (Diamond 50) under different operating test conditions such as applied normal load (5–35 N), sliding speed (0.3–1.5 m/s) and sliding distance (90–450 m).Experimental results showed that the addition of CB has significantly affected the wear and friction characteristics of both DPNR and IR, i.e. it reduces the abrasion weight loss by more than 70% compared to unfilled rubber, depending on the test conditions and the concentration of CB. The friction coefficient of DPNR was decreased by about 12.5% upon the addition of 50 phr CB, compared to unfilled DPNR. Meanwhile, adding (25–50 phr) CB to IR drastically deteriorates the friction coefficient, i.e. an increase in the friction by about 200% at 25 phr CB and 300% at 50 phr CB compared to unfilled IR.Finally, scanning electron microscopy (SEM) technique is employed to observe the abrasion pattern of rubber in order to correlate the experimental test results to the wear mechanisms.  相似文献   

19.
The effect of Al2O3 content on the mechanical and tribological properties of Ni–Cr alloy was investigated from room temperature to 1000 °C. The results indicated that NiCr–40 wt% Al2O3 composite exhibited good wear resistance and its compressive strength remained 540 MPa even at 1000 °C. The values obtained for flexural strength and fracture toughness at room temperature were 771 MPa, 15.2 MPa m1/2, respectively. Between 800 °C and 1000 °C, the adhesive and plastic oxide layer on the worn surface of the composite was claimed to be responsible for low friction coefficient and wear rate.  相似文献   

20.
《Wear》2007,262(5-6):742-748
Tribological characteristics of ultra-high molecular weight polyethylene (UHMW-PE) disks molded at 130–190 °C were studied. The highest crystallinity was obtained for the sheet molded at 130 °C, but crystallinity decreased with increasing molding temperature. Beyond 150 °C, the resultant crystallinity reached a constant level. The dynamic friction coefficients of these UHMW-PE disks were measured using a ball-on-disk friction tester. The friction coefficient decreased with increasing number of rotations in the early stage of the measurement, and achieved at an equilibrium level, independent of the molding temperature. The steady-state friction coefficient was 0.04 for the disk molded at 130 °C and increased with increasing molding temperature. The disks molded at 150–190 °C always had a steady-state friction coefficient of 0.065. The surface deformation of each disk was evaluated from the observation of the resultant wear track. Analyzing the relationship between the above friction coefficient and width of the wear track enabled us to interpret the tribological mechanism generated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号