首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在溶液中制备FePO_4·2H_2O前驱体,利用氢气还原法于650℃制得了锂离子电池正极材料LiFePO_4,并对其进行了包覆和掺杂.采用X射线衍射法(XRD)、扫描电镜法(SEM)、循环伏安法(C-V)、交流阻抗法(EIS)及充放电测试对材料进行了结构表征和电化学性能测试.结果表明,该方法制得的材料具有单一的橄榄石结构,样品形貌规则、颗粒均匀.包覆碳和掺镁后,材料具有较低的阻抗及较高的首次放电比容量,LiFePO_4、LiFePO_4/C、LiMg_(0.01)Fe_(0.99)PO_4/C的首次放电比容量分别为125.09mA·h/g、139.17mA·h/g、146.97mA·h/g.  相似文献   

2.
作为新一代锂离子电池正极材料的磷酸铁锂(LiFePO4)具有众多优点,因而被认为是一种很有开发前途的正极材料,目前已报道的LiFePO4制备方法多种多样.综述了LiFePO4材料在制备方面的研究进展,比较了不同合成方法对材料性能的影响.  相似文献   

3.
以柠檬酸为螯合剂和碳源,采用溶胶-凝胶法合成了B在P位掺杂的LiFeP0.95B0.05O4-δ/C复合材料.通过XRD、CV、恒流充放电测试等手段对晶体结构和电化学性能进行研究.结果表明,复合材料具有单一的橄榄石型晶体结构,B在P位掺杂可提高材料的导电性能,降低电极极化,能有效改善材料的循环性能和高倍率性能.650℃下合成的LiFeP0.95B0.05O4-δ/C复合材料在0.2、5、10C的首次放电比容量分别为149.3、123.4和112.1mAh/g,其容量保持率分别为99.3%(0.2C,20次)、91.65%(5C,150次)和92.9%(10C,150次),不同倍率下持续充放电30次后,0.2C放电容量仍能恢复至初始值.  相似文献   

4.
以Fe2O3为铁源,用环氧树脂对反应前驱体进行包覆,通过固相还原法制备了LiFePO4/C复合正极材料.采用XRD、SEM、循环伏安以及充放电测试等方法对其晶体结构、表观形貌和电化学性能进行了研究.研究结果表明,煅烧温度对材料的电化学性能有较大影响,在700℃煅烧所得产物为单一的橄榄石型晶体结构,粒径分布较均匀,且具有良好的电化学性能.以0.1C倍率进行充放电,其首次放电容量为150.3mAh/g,充放电循环20周后,容量保持率达99.2%;以1.0、2.0C倍率进行充放电,其首次放电容量分别为131.4和122.1mAh/g.其在过充条件下的电性能也佳,过充后还能继续放电,但在过放电条件下,其电性能迅速劣化.  相似文献   

5.
通过水热法制备了石墨烯包覆量不同的石墨烯/富锂三元正极复合材料。采用X射线衍射仪、扫描电子显微镜和电化学交流阻抗等对包覆后富锂三元正极复合材料的物相结构、形貌及电化学性能进行了研究。结果表明:石墨烯包覆量为2%(质量分数)时,包覆效果较好,石墨烯/富锂三元正极复合材料首次库仑效率为89.6%,比富锂三元正极材料提高了17.16%,放电比容量为226.41mAh/g,比原材料提高了21.38mAh/g;以0.5C循环100次后石墨烯/富锂三元正极复合材料放电比容量可保持在154mAh/g,容量保持率为88%,比富锂三元正极材料提高了5.3%;石墨烯/富锂三元正极复合材料阻抗为75Ω,比富锂三元正极材料阻抗低50Ω。  相似文献   

6.
李军  黄慧民  魏关锋  夏信德  李大光 《材料导报》2007,21(11):125-126,129
为提高LiFePO4的电化学性能,通过固相合成法制备了掺碳的LiFePO4正极材料,并用XRD、SEM、电化学工作站及充放电测试等对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小,粒径分布均匀,0.1C首次放电比容量为141.9mAh/g,循环50次后容量下降了11.2mAh/g,以1C倍率首次放电比容量为126.5mAh/g,循环50次后容量保持率为87.2%.  相似文献   

7.
通过高温固相法合成了掺杂Zr4+的正极材料Li1-xZrxFePO4(x=0、0.005、0.01、0.02、0.03、0.04)。采用X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电、交流阻抗(ACI)和正电子湮没寿命谱(PALS)等分析测试技术对掺杂材料的晶体结构、形貌、电化学性能和微观缺陷进行研究。结果表明,在整个掺杂范围内,所有样品都具有单一的橄榄石结构,且样品表面形貌和颗粒尺寸的变化较小;掺杂系列样品中,Li0.99Zr0.01FePO4具有最好的电化学性能,在0.1C充放电倍率下,首次放电比容量达到141.6mAh/g,高于未掺杂的LiFePO4的容量107.4mAh/g,经30次循环后Li0.99Zr0.01FePO4的容量保持率为75.8%。交流阻抗谱研究表明,掺杂Zr4+使锂离子脱嵌过程中电荷转移反应的阻抗明显减小;正电子湮没寿命谱研究表明掺杂Zr4+可以在样品晶格内部产生空位缺陷,使正电子湮没寿命增加,从而提高材料电导率。  相似文献   

8.
改进固相法制备LiFePO4/C正极材料及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法制备了掺碳的磷酸铁锂正极材料,并用XRD,SEM,元素分析,红外光谱及激光粒度分布仪等对样品进行了测试分析.结果表明,样品具有单一的橄榄石结构和较好的放电平台(约3.4V),粒度较小粒径分布均匀,0.1C首次放电比容量为137.8mAh/g,循环20次后容量保持率为92.6%,以1C倍率首次放电比容量为129.6mAh/g,循环20次后容量下降10.8%.  相似文献   

9.
通过高温固相合成法以MnCO3为锰源、(MgCO3)4·Mg(OH)·5H2O为镁源,葡萄糖为碳源,在氩气气氛下合成二元掺杂Mn、Mg的LiFe0.8Mn0.1Mg0.1PO4/C和LiFePO4/C正极材料,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱仪(FT-IR)进行结构表征,通过恒电流充放电实验研究了LiFe0.8Mn0.1Mg0.1PO4/C和LiFePO4/C电化学性能。结果表明,二元掺杂Mn、Mg的LiFe0.8Mn0.1Mg0.1PO4/C呈现橄榄石结构,无杂质产生。与未掺杂的LiFePO4/C相比,掺杂后LiFe0.8Mn0.1Mg0.1PO4/C提高了电导率,0.1C倍率下放电可逆容量为131mAh/g,表现出良好的电化学性能。  相似文献   

10.
主要研究了纳米氧化铝包覆对LiFePO4/C复合正极材料结构和电化学特性的影响。采用溶胶凝胶方法把纳米氧化铝包覆在商业LiFePO4/C颗粒表面。研究了Al2O3包覆层的量对LiFePO4电极在室温和高温充放电性能的影响。结果显示:2wt%Al2O3包覆层能有效增加电池的循环容量,能延缓电池在高温条件下充放电的容量衰减,减小电极的界面阻抗。这归因于氧化铝包覆层对磷酸铁锂晶粒的表面起保护作用,减少电解液对磷酸铁锂晶粒表面的腐蚀,从而改善循环过程中磷酸铁锂的表面结构的完整和稳定,确保锂离子扩散通道的畅通。  相似文献   

11.
LiFePO4的制备及其电化学性能研究   总被引:8,自引:1,他引:8  
朱伟  樊小勇  胡杰  潘复生 《功能材料》2004,35(6):734-735,738
介绍用工艺较简单的溶肢凝肢法制备橄榄石结构的LiFePO4锂离子电池正极材料。讨论了不同的烧结温度和烧结时同等条件对材料电化学性能的影响。掺杂Cu后,以0.2mA/cm^2放电。放电容量145mAh/g。  相似文献   

12.
The nano-metastructured LiFePO4/C composites were synthesized by carbothermal reduction method using starch gel as carbon source and dispersing media to obtain high tap density LiFePO4 with excellent electrochemical performance. The raw materials were coated by starch gel as compact precursors, which was sintered at 750 degrees C for 8 h to obtain high-density LiFePO4/C composite aggregated with nano-sized particles. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations showed that the primary particles had an average size of about 50-80 nm and the aggregates had a homogeneous particle size distribution of about 400 nm. The asprepared samples had a shortened lithium-ion diffusion length but with higher tap density, thus leading to the excellent electrochemical performance of the cathode materials. Electrochemical results showed that the samples delivered high discharge capacities of 155.6 and 120.7 mAh/g at 0.2C and 5C rates, respectively, with excellent cycling performance.  相似文献   

13.
以吡咯为单体,多壁碳纳米管和氧化石墨烯为模板,过硫酸铵为氧化剂,采用原位化学聚合法制备了聚吡咯/多壁碳纳米管/氧化石墨烯(PPy/MWNTs/GO)复合材料.利用傅里叶变换红外光谱(FTIR)、X射线衍射谱(XRD)、扫描电镜(SEM)、循环伏安法(CV)和电化学交流阻抗谱(EIS)对制备复合材料的结构、微观形貌和电化学性能进行了研究,探讨了多壁碳纳米管/氧化石墨烯比例、吡咯用量对复合材料电容性能的影响.研究结果显示,PPy/MWNTs/GO复合材料具有较大的比电容和良好的循环稳定性,且具有较小的电荷转移电阻,接近于理想的超级电容器用电极材料.  相似文献   

14.
采用碳热还原方法、以不同掺碳(葡萄糖为碳源)方式合成LiFePO4/C复合正极材料,利用X射线衍射仪、高倍率透射电镜以及电池测试仪等手段对样品进行了分析研究,并探讨了不同掺碳方式对复合LiFePO4/C正极材料性能的影响.结果表明,采用湿法加入葡萄糖制备的LiFePO4/C正极材料中LiFePO4的粒径范围在40~80nm左右,为纳米材料尺度,0.05C倍率下首次放电比容量达到160mAh/g,1C倍率下循环50次后,容量衰减仅为1.2%.  相似文献   

15.
以Fe2(SO4)3、H3PO4和NH3·H2O为原料,采用控制结晶法制备了多孔的前驱体FePO4·xH2O.通过研究pH值和合成时间对前驱体的物相结构、成分、表面形貌、粒度、比表面积和振实密度的影响,发现在pH=2.1的条件下反应8h制备的前驱体性能最佳.将前驱体、Li2CO3及葡萄糖均匀混合,用碳热还原法合成了LiFePO4/C,结果表明,以pH=2.1时制备的前驱体为原料合成的LiFePO4/C在0.1C时的首次放电比容量为156mAh/g,其振实密度高达1.20g/cm3.  相似文献   

16.
傅晓燕  梅军  刘昊  刘西川 《功能材料》2015,(6):6115-6119
采用电化学沉积法,以碳气凝胶(CA)为基底沉积氢氧化钴(Co(OH)2),并热处理制备碳气凝胶/四氧化三钴(CA/Co3O4)复合电极材料。采用XRD,SEM对样品的结构和微观形貌进行表征。采用循环伏安,恒电流充放电测试,交流阻抗测试对样品的电化学性能进行了表征和测试。研究结果表明,采用电化学沉积法制备的CA/Co3O4复合电极材料,在电流密度0.5和5 A/g时,其质量比容量分别为1 020和646 F/g。可见Co3O4的复合,能够很大程度的提升电化学性能。  相似文献   

17.
LiFePO4/C composite nanobelts were synthesized by calcination of the [LiOH + Fe(NO3)3 + H3PO4]/polyvinyl pyrrolidone (PVP) electrospun nanobelts. PVP was used as the electrospinning template and carbon source. During the calcination, [LiOH + Fe(NO3)3 + H3PO4] were transformed to lithium iron phosphate (LiFePO4) and PVP was decomposed into carbon. The morphology and properties of the as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller (BET) specific surface area analysis, electrochemical impedance spectroscopy and galvanostatic charge–discharge measurements. The results indicate that the mean width of LiFePO4/C composite nanobelts is 2.50 ± 0.33 μm, the average thickness is about 162 nm and the BET specific surface area is 19.4 mg?1. The addition of carbon does not affect the structure of LiFePO4, but improves its electrochemical performances. At the current density of 0.2 C, the initial discharge capacity of LiFePO4/C electrode is 123.38 mAh g?1 and there is no obvious capacity fading after 50 cycles. The formation mechanism of LiFePO4/C composite nanobelts was also proposed.  相似文献   

18.
通过简单高能球磨和高温热解法制备了锂离子电池Si/C电极复合材料,聚丙烯腈(PAN)包覆的纳米颗粒(Si@PAN)与多壁碳纳米管(MWCNTs)混合,制得Si@环化PAN/MWCNTs(Si@c-PAN/MWCNTs)复合材料作为锂离子电池的负极材料。包覆在纳米Si外层的高温热解后的PAN能够有效缓冲Si在充放电过程中巨大的体积变化产生的应力,同时MWCNTs作为Si@c-PAN的基体阻止Si@c-PAN颗粒的团聚,也提高了Si@c-PAN/MWCNTs复合材料电极的导电性能。电化学测试结果表明,Si@c-PAN/MWCNTs复合材料电极在电流密度为0.2 A/g时,其首次放电比容量达到2 098 mA?h/g,库伦效率达到86%;循环50次后Si@c-PAN/MWCNTs复合材料电极的可逆比容量仍能够达到1 278 mA?h/g,在2 A/g放电时其比容量为600 mA?h/g,仍保持良好的循环稳定性。   相似文献   

19.
20.
为了提高LiFePO4的电化学性能,采用球磨辅助分段焙烧高温固相法,在前躯体中掺入不同的碳源(蔗糖、煤焦油沥青、改性后的煤焦油沥青-标记为M),合成了锂离子蓄电池LiFePO4/C正极材料.用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安(CV)和恒流充放电测试等方法对其物相结构、表观形貌和电化学性能进行表征和分析.结果表明,合成的LiFePO4/C材料具有单一的橄榄石晶体结构,是粒径为纳米级的球形颗粒;材料具有较高的放电容量和良好的循环性能.其中,以M为碳源合成的LiFePO4/C材料的电化学性能最优异,在以0.1C倍率充放电时,掺入8.5%M的样其容量高达168mAh/g且经过30个循环后容量没有衰减.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号