首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersibility of graphene sheets in polymer matrices and interfacial interaction are challenging for producing graphene-based high performance polymer nanocomposites. In this study, three kinds nanofillers; pristine graphene nanoplatelets (GNPs), graphene oxide (GO), and functionalized graphene sheet (FGS) were used to prepare polyurethane (PU) composite by in-situ polymerization. To evaluate the efficacy of functional groups on the graphene sheets, PU reinforced with GNPs, GO, and FGS were compared through tensile testing and dynamic mechanical thermal analysis. The Young's moduli of 2 wt% GO and FGS based PU nanocomposites were found significantly higher than that of same amount of GNPs loading as an evidence of the effect of functional groups on graphene sheets for the mechanical reinforcement. The strong interaction of FGS with PU was responsible to exhibit notably high modulus (25.8 MPa) of 2 wt% FGS/PU composite than the same amount of GNPs and GO loading even at elevated temperature (100 °C).  相似文献   

2.
Graphene oxide sheets with isocyanate functional groups (GONCO) were firstly synthesized and functionalized graphene/polyimide (FGS/PI) nanocomposites were subsequently prepared by typical solution casting and thermal imidization. The chemical changes of GONCO during the preparation of FGS/PI nanocomposites were carefully characterized by Fourier transfer infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. As a result, the morphology analysis indicated that the FGS were dispersed in the PI matrix and were aligned more orderly with increasing the FGS contents. The tensile strength and the modulus of FGS/PI nanocomposites were significantly increased by 60% with a small quantity of 0.75 wt% FGS incorporated and decreased beyond that dosage. Moreover, the thermogravimetric analysis (TGA) results revealed that the thermal stability of PI was slightly improved by the incorporation of FGS.  相似文献   

3.
In this study, graphite oxides (GOs) with different oxidation degrees and graphene nanosheets were prepared by a modified Hummers method and thermal exfoliation of the prepared GO, respectively. Polystyrene (PS)/GO and PS/graphene nanocomposites were prepared via melt blending. X-ray diffraction results showed that GOs and graphene were exfoliated in the PS composites. It could be observed from the scanning electron microscope images that GOs and graphene were well dispersed throughout the matrix without obvious aggregates. Dynamic mechanical thermal analysis suggested that the storage modulus for the PS/GO1 and PS/graphene nanocomposites was efficiently improved due to the low oxygen content of GO1 and the elimination of the oxygen groups from GO. The flammability of nanocomposites was evaluated by thermal gravimetric analysis and cone calorimetry. The results suggested that both the thermal stability and the reduction in peak heat release rate (PHRR) decreased with the increasing of the oxygen groups in GOs or graphene. The optimal flammability was obtained with the graphene (5 wt%), in which case the reduction in the PHRR is almost 50 % as compared to PS.  相似文献   

4.
Graphite oxide (GO)/poly(methyl methacrylate) (PMMA) nanocomposites were prepared by a novel method utilizing macroazoinitiator (MAI). The MAI, which has a poly(ethylene oxide) (PEO) segment, was intercalated between the lamellae of GO to induce the inter-gallery polymerization of methyl methacrylate (MMA) and exfoliate the GO. The morphological, conductivity, thermal, mechanical and rheological properties of these nanocomposites were examined and compared with those of intercalated nanocomposites prepared by polymerization with the normal radical initiator, 2,2′-azobisisobutyronitrile. The improvement in conductivity by GO was more evident in exfoliated nanocomposites compared to that of intercalated nanocomposites. For example, a conductivity of 1.78 × 10−7 S/cm was attained in the exfoliated nanocomposite prepared with 2.5 parts GO per 100 parts MMA, which was about 50-fold higher than that of the intercalated nanocomposite. The thermal, mechanical and rheological properties also indicate that thin GO with a high aspect ratio is finely dispersed and effectively reinforced the PMMA matrix in both exfoliated and intercalated nanocomposites.  相似文献   

5.
Salophen Al complex functionalized graphene (SCFG) nanocomposite was synthesized by simple coordination of phenol functionalized graphene (PFG) and as-prepared salophen Al complex. This process is facile, convenient and high efficient. We also investigated the structure, optical properties and electrochemical properties of the obtained SCFG composites. The results showed that salophen Al conjugated and incorporated onto the graphene sheet surface and the composites maintained the micro-structure of graphene sheets without agglomeration. The photoluminescence of salophen Al was completely quenched by graphene, due to the charge transfer between the salophen Al and the graphene nanosheets. Moreover, a significant electrochemical signal emerged on the SCFG modified electrodes compared with those of the graphene sheets or salophen Al complex. Owing to preliminary results of the excellent electrochemical property, SCFG nanocomposite is a promising electrochemical redox probe material.  相似文献   

6.
为了解决石墨烯纳米片在水泥基体中的分散问题,采用芳基重氮盐(F)对氧化石墨烯(GO)进行改性,制备了一种新型亲水型功能化石墨烯(FG)。结果表明,FG在水溶剂中最大的分散浓度能够达到2.1 mg/mL。FTIR、拉曼光谱和XPS结果表明F成功对石墨烯进行了表面改性。对比纯水泥基体材料,本文所制备的亲水型FG/水泥复合材料的28天抗折强度和抗压强度相对提高了95.3%和78.3%。F对GO进行改性,实现了石墨烯在水泥基材料中的均匀分散及对其力学性能的提升。   相似文献   

7.
For developing high performance of graphene-based nanocomposites, dispersibility of graphene sheets in matrices and interfacial interaction are challenging due to the strong tendency of agglomeration and surface inertia of graphene. Here we report an efficient way to functionalize graphene nanosheets with aniline groups on their surfaces, to attain the functionalized graphene nanosheets (FGS) by diazonium treatment following reduction of graphene oxide with hydrazine hydrate. Two kinds of nanocomposites based on diallyl bisphenol A modified bismaleimide (BMI-BA) resin which was filled with functionalized graphene and reduced graphene oxide nanosheets were prepared, and the FGS were linked with BMI resin by chemical bonds. The FGS/BMI-BA composite at a loading of 0.3 wt% revealed a 39% increase in impact strength and a slightly improvement in flexural strength, and the resulting composite remains stable at high temperature. This work provides more possibilities for incorporation of graphene into polymer matrices and an efficient method to toughening the BMI resin.  相似文献   

8.
以1,4-双(4-氨基-2-三氟甲基苯氧基)苯(6FAPB)和3,3',4,4'-二苯醚四酸二酐(ODPA)为合成聚酰亚胺(PI)的单体,首先采用原位氨基化方法使氧化石墨烯(GO)与6FAPB反应转变为原位氨基化GO,再与ODPA和剩余的6FAPB发生聚合反应得到原位氨基化GO/聚酰胺酸(PAA)溶液。涂膜后,经热酰亚胺化制备出GO质量分数分别为0.05wt%、0.1wt%、0.3wt%、0.5wt%和1.0wt%的原位氨基化GO/PI复合材料膜。利用FTIR、XPS、XRD、UV-vis、TGA、TMA、SEM、拉伸性能测试及接触角测试对原位氨基化GO/PI复合材料的结构和性能进行表征。结果表明,原位氨基化使GO以化学键与PI大分子链连接,有利于GO在复合材料基体中的稳定和均匀分散。XRD结果表明,所得到的原位氨基化GO/PI复合材料膜均为无定型结构。随GO质量分数增加,原位氨基化GO/PI复合材料薄膜的光学透明性急剧降低,但力学性能和热稳定性有一定提高。当GO的质量分数为1.0wt%时,原位氨基化GO/PI复合材料的拉伸强度由64 MPa增加到83 MPa,杨氏模量由1.67 GPa提高到2.10 GPa,10%热失重温度由593℃增加到597℃,玻璃化转变温度变化不大。由于热酰亚胺化后GO表面的大部分含氧官能团消失,原位氨基化GO/PI复合材料膜的吸水率由0.86%降低至0.58%,水接触角由72.5°增加到77.8°。  相似文献   

9.
We report a simple and effective supercritical route to decorate silver nanoparticles (Ag NPs) on graphene oxide (GO) using a commonly available and non-toxic glucose as a reducing agent. Transmission electron microscopy and energy-dispersive X-ray analysis confirmed that Ag NPs of size around 8–20 nm were coated on the GO surface under optimized experimental condition. Ag NPs on the GO surface were predominantly spherical in shape and well dispersed. The experimental results proved that the as-synthesized GO/Ag nanocomposite could be used as a highly efficient photocatalyst for the degradation of Rhodamine 123 dye and acetaldehyde under visible-light irradiation. The degradation results indicated that the photocatalytic performance of nanocomposite was greatly enhanced owing to the improved adsorption performance and separation efficiency of photo-generated carriers. The nanocomposite maintains a high level activity even after four times of recycle. Furthermore, the nanocomposite exhibited excellent antibacterial activity against gram-positive and gram-negative microorganisms.  相似文献   

10.
Polyurethane (PU) nanocomposite films containing highly-aligned graphene sheets are produced. Aqueous dispersion of ultralarge-size graphene oxide (GO) is in situ reduced in waterborne polyurethane, resulting in fine dispersion and high degree of orientation of graphene sheets, especially at high graphene contents. The PU/reduced GO nanocomposites present remarkable 21- and 9-fold increases in tensile modulus and strength, respectively, with 3 wt.% graphene content. The agreement between the experiments and theoretical predictions for tensile modulus proves that the graphene sheets are indeed dispersed individually on the molecular scale and oriented in the polymer matrix to form a layered structure. The moisture permeability of the nanocomposites presents a systematic decrease with increasing graphene content, clearly indicating the impermeable graphene sheets acting as moisture barrier. The synergy arising from the very high aspect ratio and horizontal alignment of the graphene sheets is responsible for this finding.  相似文献   

11.
Significant improvements in the thermomechanical and surface chemical properties of nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) (PLGA) were achieved by adding 2-dimensional nanoscale fillers of graphene oxide (GO) nanosheets to PLGA nanofibers. The significant enhancement of storage and loss moduli of the PLGA/GO (2 wt.%.) nanocomposite nanofibers were presumably caused by enhanced chemical bonding between the oxygenated functional groups of the highly dispersible GO nanosheets and the hydroxyl groups of the polymer chains in the PLGA matrix, resulting in strong interfacial interactions between the nanofiller and polymer matrix. Enhanced hydrophilicity of nanocomposite nanofibers caused by embedded GO nanosheets also allowed for good biocompatibility of neuronal cells, resulting in enhanced cell proliferation and viability. Our findings indicate that nanocomposite biopolymer nanofibers embedded with GO nanosheets are attractive candidates for use in biomedical applications such as scaffolds.  相似文献   

12.
Colorless and organo-soluble polyimide (PI) films have been synthesized from an alicyclic dianhydride BCDA and aromatic diamine 3,4′-ODA in the cosolvent of DMAc and GBL via one-step process. The graphene oxide (GO) was mixed with the above PI in DMAc solution to fabricate the PI/GO nanocomposite films. With the addition of only 0.001 wt% of GO in PI matrix, the resultant nanocomposite (PI/GO-0.001) exhibits not only the enhanced resistance to moisture but also retains superior visible light transmission, enhanced mechanical strength, and excellent dimensional stability, simultaneously. The water-vapor-transmission-rate (WVTR) significantly reduced to 30 g mil m−2 day−1 for this nanocomposite compared to 181 g mil m−2 day−1 for pure PI. Notably, the PI/GO-0.001 nanocomposite also exhibits low coefficient of thermal expansion (CTE) of 41 ppm °C−1, which is benefited from the homogeneous distribution of ultrathin GO nanosheets in PI matrix.  相似文献   

13.
通过溶胶-凝胶法制备了孔径小于1 μm的多级孔径新型石墨烯气凝胶。制备过程中, 首先通过Nafion对氧化石墨烯(GO)表面进行化学修饰, 并利用乙二胺还原制备石墨烯水凝胶, 最终通过冷冻干燥形成石墨烯气凝胶。实验发现Nafion可以有效减少制备过程中氧化石墨烯的团聚, 使石墨烯气凝胶形成多级孔径形貌。所得石墨烯气凝胶的孔径可控制在1 μm以内, 远小于传统石墨烯气凝胶材料的孔径(20~100 μm)。这种具有独特结构的石墨烯气凝胶表现出优异的性能, 例如高比表面积, 高孔隙率, 其电化学电容性能相对传统气凝胶提高了约40%。  相似文献   

14.
Park OK  Hahm MG  Lee S  Joh HI  Na SI  Vajtai R  Lee JH  Ku BC  Ajayan PM 《Nano letters》2012,12(4):1789-1793
Highly conductive reduced graphene oxide (GO) polymer nanocomposites are synthesized by a well-organized in situ thermochemical synthesis technique. The surface functionalization of GO was carried out with aryl diazonium salt including 4-iodoaniline to form phenyl functionalized GO (I-Ph-GO). The thermochemically developed reduced GO (R-I-Ph-GO) has five times higher electrical conductivity (42,000 S/m) than typical reduced GO (R-GO). We also demonstrate a R-I-Ph-GO/polyimide (PI) composites having more than 10(4) times higher conductivity (~1 S/m) compared to a R-GO/PI composites. The electrical resistances of PI composites with R-I-Ph-GO were dramatically dropped under ~3% tensile strain. The R-I-Ph-GO/PI composites with electrically sensitive response caused by mechanical strain are expected to have broad implications for nanoelectromechanical systems.  相似文献   

15.
Large-scale graphene oxide (GO) with adjustable resistivity was synthesized from graphite via an electrochemical method using KCl solution as an effective electrolyte. During the exfoliation process, electrostatic force intercalates chloride ions between the expanded graphite layers on the anode. These chloride ions form small gas bubbles between the graphite layers in the electrochemical reaction. It is believed that the gas bubbles expand the gap between graphite sheets and produce a separating force between adjacent graphene layers. This separating force overcomes the Van der Waals force between adjacent sheets and exfoliates graphene layers from the starting graphite. Because the graphene is electrochemically oxidized by chorine during the exfoliation, the exfoliated GO sheets are hydrophilic and easily dispersed in the electrolyte solution. The GO solution prepared by the electrochemical exfoliation can be simply sprayed or spin-coated onto any substrate for device applications. The measured average thicknesses of a monolayer, bilayer, and trilayer exfoliated GO on SiO2 substrate were 1.9, 2.8, and 3.9 nm, respectively. It was observed that the measured resistance of the exfoliated GO sheets increases due to electrochemical oxidation in the solution. This electrochemical approach offers a low-cost and efficient route to the fabrication of graphene based devices.  相似文献   

16.
A facile and efficient approach was developed to simultaneously functionalize and tune the reduction state of graphene oxide (GO) with γ-aminopropyl triethoxysilane (APTES) aided by NH3 solution. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy indicated that many surface groups of GO sheets were removed, and APTES were successfully functionalized onto GO sheets. The APTES-functionalized GO sheets (GO-APTES) were dispersed in water and further incorporated into nitrile butadiene rubber (NBR) by latex co-coagulation to form GO-APTES/NBR composites. These composites featured high degrees of exfoliation and intercalation of GO-APTES sheets throughout the NBR matrix. More significantly, the GO-APTES/NBR composites exhibited a relatively high dielectric constant (∼30.8) and a small loss factor (<0.04) at 1.0 kHz, combining with a good insulating property. The unique dielectric responses of GO-APTES/NBR composites open up the potential applications of these materials in resistive and capacitive field grading materials.  相似文献   

17.
Graphene oxides (GOs) with large sheets and more perfect aromatic structure were prepared by a novel modified Hummers method. We demonstrated that the graphite did not need to be oxidized to such a deep degree as described in Hummers method because the space distance increased little when the oxidation proceeded to a certain extent and the obtained graphite oxides (GTOs) could be fully exfoliated to single layers with high thermal stability. The oxidation mechanism and chemical structure model of GO were proposed by analyzing the evolution of the functional groups with oxidation proceeded based on thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The layer spacing calculated by molecular dynamics simulations coincided with the X-ray diffraction results. Furthermore, the size distribution and thickness of GOs were also studied. The results confirmed that the GOs prepared by the modified method were fully exfoliated to uniform single layers, and this method may be important for efficient exfoliation of GTO to GO and large-scale production of graphene.  相似文献   

18.
In this work, a simple and mild procedure was employed to synthesize polydopamine-reduced graphene oxide (PDA-RGO) nanocomposites, where the sheets of graphene oxide were functionalized firstly with PDA through self-polymerization. FTIR was used to confirm that the GO sheets had been functionalized successfully with PDA and reduced. Besides, UV-Vis and X-ray diffraction spectroscopy were employed to further demonstrate the formation of RGO. The electrochemical property of the PDA-RGO has been studied by the determination of hydrazine. The results indicated that the electrochemical oxidation of hydrazine was significantly improved by the obtained PDA-RGO nanocomposite due to the increased available surface area of electrode. A quick amperometric response was observed with the electrochemical sensor based on PDA-RGO nanocomposite for the hydrazine measurement in a wide linear range of 0.03–100 μM, where the limit of the detection was 0.01 μM.  相似文献   

19.
The surface chemistry of filler is closely related to the structure and morphology of nanocomposite foams.Changing the property of filler is widely used to control the cell structures and functionalize the composite foams.Surface-functionalized graphene oxide(GO-ODA) was prepared by grafting octadecylamine(ODA) on the surface of graphene oxide(GO) to make the filler disperse better in the nanocomposites and have a strong interfacial interaction with polymer matrix.Poly(methyl methacrylate)(PMMA)/GO-ODA nanocomposite foams were obtained by solution blending and foamed using supercritical carbon dioxide(scCO_2).Compared to neat PMMA and PMMA/GO samples,the PMMA/GO-ODA nanocomposite foams showed improved cell structures with smaller size,higher cell density and more homogeneous distribution,which should be attributed to the heterogeneous nucleation caused by well-dispersed GO-ODA nanosheets.This work not only improved the compatibility and interfacial interaction of GO with polymer matrix but also indicated that the modified GO sheets can act as ideal filler to control the cell density,size and size distribution efficiently.  相似文献   

20.
Pd-Pt/graphene-TiO2 nanocomposites were synthesized via a facile ultrasonic and hydrothermal method. For the functionalization of graphene, large area graphene obtained by chemical vapor deposition method was oxidized by 3-chloroperoxybenzoic acid. The functionalized graphene oxide was decorated with TiO2. And then, Pt and Pd nanoparticles were dispersed on graphene surface, simultaneously. The characterizations of “as-prepared” samples were studied by X-ray diffraction (XRD), transmission electron microscope (TEM), Raman, specific surface area (BET) and with energy dispersive X-ray (EDX). The photocatalytic activity of the Pd-Pt/graphene-TiO2 nanocomposite catalyst was evaluated by H2 evolution under UV light. Pd-Pt/graphene-TiO2 (Pd-Pt/G-TiO2) exhibited higher photocatalytic activities than control experimental group samples (TiO2, G-TiO2, Pd/G-TiO2 and Pt/G-TiO2) under UV light irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号