首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈猛  杨闯  肖斌 《化学工程师》2006,20(2):11-13
采用分步加热高温固相合成法,合成了尖晶石型LiNi0.1Mn1.9O4正极材料。用X射线衍射仪(XRD)对材料的晶体结构进行表征和晶格参数分析,并在实验电池LiNi0.1Mn1.9O4/1MLiPF6-EC DEC EMC/MCMB体系中研究了材料的电化学性能,样品的首次放电容量达到98.2mAh.g-1,经过100次循环后,LiNi0.1Mn1.9O4样品的放电容量保持率在92%以上,2C充放电时,放电容量为0.1C时的96.7%,样品具有很好的循环性能。  相似文献   

2.
采用固相法和沉淀法合成了锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2探讨了合成温度、不同合成方法对材料的电化学性能的影响。利用充放电测试、循环伏安测试方法对合成的LiCo1/3Ni1/3Mn1/3O2进行了表征。结果表明,固相法900℃煅烧合成的材料电化学性能较好,沉淀法合成的材料电化学性能最好,以10.0mA/g的电流充放电,首次放电比容量为576.0C/g,循环50次后放电比容量仍保持501.5C/g。以100.0mA/g的大电流放电,放电比容量达到430.2C/g。  相似文献   

3.
以乙酸盐为原料、柠檬酸为螯合剂,氨水调节pH,采用溶胶-凝胶法制备高容量的富锂锰基材料,并考察了滴加速度、压片处理和掺铌改性对富锂锰基材料性能的影响。通过X射线衍射和激光颗粒粒度分析表征了材料的晶体结构和颗粒组成,并制备纽扣电池,测试了材料的电化学性能。X射线衍射测试结果表明,材料具有完整的富锂锰基材料的晶体结构。压片处理和减慢滴加速度的材料首次放电容量为210 mA·h/g左右,而掺铌改性材料的首次放电容量是250 mA·h/g左右。压片处理和掺铌改性的材料在大电流下容量有所提高。通过优化合成富锂锰基材料的实验条件,为材料的量产提供了理论依据和工艺参数支持。  相似文献   

4.
采用共沉淀法和高温固相烧结相结合,合成了锂离子电池层状LiNi1/3Co1/3Mn1/3O2正极材料。采用ICP-AES元素分析方法、XRD和SEM对LiNi1/3Co1/3Mn1/3O2正极材料的成分、结构和形貌进行了表征。SEM测试结果表明,LiNi1/3Co1/3Mn1/3O2的形貌近似为球形,且颗粒分布均匀。并对其进行了充放电性能测试,结果表明:LiNi1/3Co1/3Mn1/3O2在25℃、2.5~4.6 V、0.1 C倍率下,首次放电容量达189.32 mAh.g-1(锂为负极),C/LiNi1/3Co1/3Mn1/3O2在1 C、2.75~4.2 V下,初始放电比容量为145.5 mAh/g,循环100次后,容量保持率为98.41%。是一种有发展前景的锂离子电池正极材料。  相似文献   

5.
采用"熔融浸渍法"合成了Mg和F共掺杂的不同温度下的锂离子电池正极材料Li Mn2-xMgxO3.97F0.03(x=0.05,0.1);煅烧温度为700,750和800°C。通过XRD对样品进行测试,样品为单一尖晶石结构的物相;并用SEM测试,对样品进行了形貌研究。用所制备的材料作为正极材料组装了模拟锂离子电池;在室温下进行恒电流充-放电性能测试,测试条件为3.3~4.3 V和0.2mA/cm2电流密度。随着材料制备温度的升高,电池的初始放电容量有逐渐增加的趋势,但充放电循环的容量损失也逐渐增加;氟掺杂量一定,镁掺杂量较多时,对应温度下煅烧的样品的结晶程度较好,样品的电化学性能也较好。在800下°C样品Li Mn1.9Mg0.1O3.97F0.03初始容量高达108 mAh/g,60次充放电循环后,其容量保持率高达81%,具有优良的循环稳定性能。  相似文献   

6.
采用溶胶凝胶法合成锂离子电池正极材料LiNi0.03Mn1.97O4,使用X射线衍射(XRD)、扫描电子显微镜(SEM)对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料,考察烧结温度对其结构及电化学性能的影响。随着烧结温度的升高,尖晶石型结构越来越完整,初始放电比容量增大,但循环性能却逐渐变差。在750℃下烧结温度12h得到了性能较好的HNi0.03Mn1.97O4,首次放电比容量为118.7mA·h/g,50次循环后,其放电比容量仍保持在101.6mA·h/g,适合作为锂离子电池的正极材料。  相似文献   

7.
以5V高电压LiNi0.5Mn1 5O4为正极材料,高安全性Li4Ti5O12为负极材料制备了LiNi0.5Mn1.5O4/Li4Ti5O12全电池,重点研究了正负极容量配比对电池电化学性能的影响.其中正极容量过量40%的电池具有最好的倍率和循环性能,在0.5 C电流下,P/N=1.4的电池的最高放电比容量为164.1 mAh·g-1,循环200次的容量保持率为88%;在2C电流下,P/N=1.4的电池的最高放电比容量为135.2 mAh·g-1,循环740次的容量保持率为91.1%.P/N=1.4的电池良好的倍率和循环性能与其内阻较小、电池极化较小等因素有关.  相似文献   

8.
纳米氢氧化镍制备的最新进展   总被引:1,自引:0,他引:1  
纳米材料由于其颗粒较小,因此其性能和常规材料相比有较大的改变.随着纳米材料科学技术的迅猛发展,纳米材料的研究逐渐扩展到化学电源领域.氢氧化镍作为Ni-MH二次电池的主要正极活性材料,对电池的容量和寿命起着关键性的作用.但是目前传统方法制备的氢氧化镍容量较低,远没有达到其理论值.随着将纳米材料制备技术引入到氢氧化镍的合成,使其比容量有了质的提升,合成纳米氢氧化镍也成为研究的热点.介绍了纳米材料的一般性知识,同时阐述了纳米氢氧化镍作为Ni-MH电池的正极活性材料所具有的特性和制备方法上的最新进展,以及在制备和应用方面出现的一些问题.  相似文献   

9.
技术转让     
锂离子电池正极材料氧氟化锂钴该产品可应用于移动电话、笔记本电脑、摄像机、航空、航天等领域。该成果研究了锂离子电池新型正极材料氧氟化锂钴的关键技术和工艺流程 ,以金属钴为起始原料制备β-Co(OH) 2 ,以 β -Co(OH) 2 为前躯体合成氧氟化锂钴 ,优化了工艺参数 ;采用掺氟的办法 ,降低了氧氟化锂钴的合成温度 ,改善了电池的充放电循环性能 ,经检测 ,首次放电容量达到 15 1 7mAh/g。试制的AA型电池中 ,材料的比容量达到 13 7mAh/g ,充放电效率 >99 4% ,试制的 1865 0型电池容量达到180 0mAh ,2 0 0次循环容量损失…  相似文献   

10.
采用共沉淀还原扩散法制备了La0.67Mg0.33Ni2.5Co0.5合金。以固相法合成酞菁铁,研究了酞菁铁作为镍氢电池电解液添加剂和负极添加剂时对电池电化学性能的影响,结果表明,在电解液中,当酞菁铁添加量为0.045%时,电池的最大放电容量提高了20 mAh/g,容量衰减率降低了10.98%;在电池负极中,当酞菁铁添加量为1.0%时,电池的最大放电容量提高了40 mAh/g,容量衰减率降低了13.14%。  相似文献   

11.
采用共沉淀还原扩散法制备了La0.67Mg0.33Ni2.5Co0.5合金.以固相法合成酞菁铁,研究了酞菁铁作为镍氢电池电解液添加剂和负极添加剂时对电池电化学性能的影响,结果表明,在电解液中,当酞菁铁添加量为0.045%时,电池的最大放电容量提高了20 mAh/g,容量衰减率降低了10.98%;在电池负极中,当酞菁铁添加量为1.0%时,电池的最大放电容量提高了40 mAh/g,容量衰减率降低了13.14%.  相似文献   

12.
付芳 《广东化工》2022,(12):1-4
为了研制出低成本、高性能的电池材料,选取价格低廉的Mn、Fe元素作为研究材料的主要组成元素,设计并合成了Na0.67Mn0.67Ni0.13Fe0.13O2层状正极材料,研究了该材料的形貌、结构和电化学性能。X射线衍射测试结果表明Na0.67Mn0.67Ni0.13Fe0.13O2材料具有纯的P2相结构。在2~4.3 V电压范围内进行恒电流充放电测试,0.5 C倍率下,材料的首周放电比容量为112.9 mAh·g-1,经过100周循环后,放电比容量为79.1 mAh·g-1,容量保持率为69.97%;在10 C高倍率下,首周放电比容量为80.42 mAh·g-1,1000周循环后放电比容量达到42.11 mAh·g-1,容量保持率为51.72%。材料展现出优秀的高倍率性能。  相似文献   

13.
采用Li Ni1/3Co1/3Mn1/3O2作为正极材料,石墨为负极材料,制成18650型/1300 m A·h功率型圆柱电池;该类电池5 C放电容量相当于1 C放电容量的99%,5 C循环测试900次后,容量剩余87%以上;经过针刺后,电池没有起火爆炸。  相似文献   

14.
以球形三元前驱体Ni0.5Co0.2Mn0.3(OH)2以及LiOH.H2O为原料,用正交实验优化锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2合成工艺,考察烧结温度、保温时间以及锂与金属元素(Ni、Co、Mn总量)物质的量比等因素对材料电化学性能的影响。得到最佳条件:烧结温度为800℃,保温时间为12 h,锂与金属元素物质的量比为1.06。按最佳工艺合成的样品在0.2 C、1 C首次放电比容量分别为165.1 mA.h/g和151.6 mA.h/g,且表现出良好的循环稳定性。  相似文献   

15.
通过高温固相反应法分别于800℃,900℃,1050℃在空气中煅烧20h合成层状LiNi0.125Mn0.125Co0.75O2锂离子电池正极材料.用XRD、SEM分析了所得材料的晶相组成和形貌,通过组装模拟电池测试考察了材料的电化学性能.随着合成温度的提高,材料的颗粒尺寸增大,800℃下煅烧的样品初始充电容量可达217mAh·g-1,初始库仑效率为81%.经20次循环后放电容量可保持初始容量的80%左右.  相似文献   

16.
氟掺杂型锂锰氧化物的电化学性能研究   总被引:3,自引:0,他引:3  
以LiNO3、LiF和Mn(AC)2·4H2O为原料,采用柠檬酸配位法,通过控制n(Li)n(Mn)和掺氟量,在750℃下制备尖晶石型系列Li1+xMn2-xO4-yFy电极材料。Li1+xMn2-xO4-yFy的充放电实验表明,随着锂掺入量的增加,材料的首次放电容量迅速降低,但材料的循环稳定性明显提高。Li1.05Mn2O4的放电容量最高(116mAh g),而且稳定性也较好。室温下,5次循环后容量仅衰减1.92%。掺氟明显降低材料在高温条件下的容量损失,但随着氟掺杂量的增加,材料的首次放电容量降低较大。同时掺杂锂和氟的材料比仅掺杂锂的材料具有更好的循环稳定性,Li1.05Mn1.95O3.95F0.05循环稳定后,放电比容量保持在103.5mAh g。Li1.15Mn1.85O3.9F0.1循环4次以后,便没有容量衰减,放电比容量稳定在98.5mAh g,因此,从比容量和循环稳定性两方面考虑,Li1.05Mn1.95O3.95F0.05和Li1.15Mn1.85O3.9F0.1是较好的电极材料。  相似文献   

17.
服务窗     
●技术转让高容量Ni(OH) 2 的合成和在镍 氢化物电池中的应用  主要用于高容量氢氧化镍的合成 ,包括 :球形氢氧化镍合成 ,由常规晶粒到纳米材料 ,放电容量由 2 2 0提高到 2 70mAh/g;纳米晶氢氧化镍合成 ,利用氨络合法得到 β型Ni(OH) 2 ,晶粒 10~ 18nm ,椭球形 ,放电比容量 2 75mAh/g ,循环寿命达到30 0余次 ;通过电解硝酸盐水溶液制得掺杂其它金属氢氧化物的Ni(OH) 2 膜电极 ,通过对 17种金属元素的考察 ,了解了它们对Ni(OH) 2 电极反应氧化还原可逆性、质子扩散系数、中值电位、析氧难度和活性物质利用率的…  相似文献   

18.
阐述氢氧化镍的制备方法,介绍各种合成方法对材料的形貌、结构、比表面积和比容量等方面的影响。描述氢氧化镍复合材料对于电化学性能的影响,进一步探讨掺杂碳材料和其他金属氢氧化物材料对电极材料结构及容量的影响。展望氢氧化镍及其复合材料在电池方面的应用前景。  相似文献   

19.
以乙酸锰、乙酸钴、草酸为原料,采用微通道反应器共沉淀法合成了花朵状的钴掺杂氧化锰(Mn1-xCoxO)锂离子电池负极材料。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)对电极材料的结构、形貌和元素状态进行了表征。采用恒流充放电测试和电化学工作站研究了钴不同掺杂量对一氧化锰负极材料电化学性能的影响。研究发现,随着钴掺杂量逐渐增加,Mn1-xCoxO由棒状演变为花朵状结构,比容量随着钴掺杂量增加先增加后下降。合成的Mn0.95Co0.05O在5C倍率下循环200次后放电比容量为496.7 mA·h/g,与未掺杂的一氧化锰相比其比容量提高约40.0%,显示出较好的电化学性能。  相似文献   

20.
以FeSO4·7H2O为原料,通过两步热处理合成碱式硫酸铁样品,考察其作为锂离子电池正极材料的电化学性能。实验结果表明,所合成的FeOHSO4样品为具有单斜结构的纯晶相材料,该材料的首次放电容量达135 mAh·g-1,平均电压平台为3.2 V,50次循环后,放电容量衰减为73 mAh·g-1。该材料合成工艺简单,成本低廉,显示了良好的工业应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号