首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study quadrature formulas of the types (1) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = C_n^{ (\lambda )} \sum\limits_{i = 1}^n f (x_{n,i} ) + R_n \left[ f \right]} ,$$ (2) $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - 1/2} f(x)dx = A_n^{ (\lambda )} \left[ {f\left( { - 1} \right) + f\left( 1 \right)} \right] + K_n^{ (\lambda )} \sum\limits_{i = 1}^n f (\bar x_{n,i} ) + \bar R_n \left[ f \right]} ,$$ with 0<λ<1, and we obtain inequalities for the degreeN of their polynomial exactness. By using such inequalities, the non-existence of (1), with λ=1/2,N=n+1 ifn is even andN=n ifn is odd, is directly proved forn=8 andn≥10. For the same value λ=1/2 andN=n+3 ifn is evenN=n+2 ifn is odd, the formula (2) does not exist forn≥12. Some intermediary results regarding the first zero and the corresponding Christoffel number of ultraspherical polynomialP n (λ) (x) are also obtained.  相似文献   

2.
In this paper we study quadrature formulas of the form $$\int\limits_{ - 1}^1 {(1 - x)^a (1 + x)^\beta f(x)dx = \sum\limits_{i = 0}^{r - 1} {[A_i f^{(i)} ( - 1) + B_i f^{(i)} (1)] + K_n (\alpha ,\beta ;r)\sum\limits_{i = 1}^n {f(x_{n,i} ),} } } $$ (α>?1, β>?1), with realA i ,B i ,K n and real nodesx n,i in (?1,1), valid for prolynomials of degree ≤2n+2r?1. In the first part we prove that there is validity for polynomials exactly of degree2n+2r?1 if and only if α=β=?1/2 andr=0 orr=1. In the second part we consider the problem of the existence of the formula $$\int\limits_{ - 1}^1 {(1 - x^2 )^{\lambda - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} f(x)dx = A_n f( - 1) + B_n f(1) + C\sum\limits_{i = 1}^n {f(x_{n,i} )} }$$ for polynomials of degree ≤n+2. Some numerical results are given when λ=1/2.  相似文献   

3.
L. Rebolia 《Calcolo》1973,10(3-4):245-256
The coefficientsA hi and the nodesx mi for «closed” Gaussian-type quadrature formulae $$\int\limits_{ - 1}^1 {f(x)dx = \sum\limits_{h = 0}^{2_8 } {\sum\limits_{i = 0}^{m + 1} {A_{hi} f^{(h)} (x_{mi} ) + R\left[ {f(x)} \right]} } } $$ withx m0 =?1,x m, m+1 =1 andR[f(x)]=0 iff(x) is a polinomial of degree at most2m(s+1)+2(2s+1)?1, have been tabulated for the cases: $$\left\{ \begin{gathered} s = 1,2 \hfill \\ m = 2,3,4,5 \hfill \\ \end{gathered} \right.$$ .  相似文献   

4.
In this paper we construct an interpolatory quadrature formula of the type $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 \frac{{f'(x)}}{{y - x}}dx \approx \sum\limits_{i = 1}^n {w_{ni} (y)f(x_{ni} )} ,$$ wheref(x)=(1?x)α(1+x)β f o(x), α, β>0, and {x ni} are then zeros of then-th degree Chebyshev polynomial of the first kind,T n (x). We also give a convergence result and examine the behavior of the quantity \( \sum\limits_{i = 1}^n {|w_{ni} (y)|} \) asn→∞.  相似文献   

5.
F. Costabile 《Calcolo》1974,11(2):191-200
For the Tschebyscheff quadrature formula: $$\int\limits_{ - 1}^1 {\left( {1 - x^2 } \right)^{\lambda - 1/2} f(x) dx} = K_n \sum\limits_{k = 1}^n {f(x_{n,k} )} + R_n (f), \lambda > 0$$ it is shown that the degre,N, of exactness is bounded by: $$N \leqslant C(\lambda )n^{1/(2\lambda + 1)} $$ whereC(λ) is a convenient function of λ. For λ=1 the complete solution of Tschebyscheff's problem is given.  相似文献   

6.
L. Rebolia 《Calcolo》1965,2(3):351-369
The coefficientsA hi (m,s) and the nodesx i (m,s) for Gaussian-type quadrature formulae
$$\int\limits_{ - 1}^1 {f(x)dx = \mathop \sum \limits_{h = 0}^{2s} \mathop \sum \limits_{i = 1}^m } A_{hi} \cdot f^{(h)} (x_i )$$  相似文献   

7.
G. Casadei  C. Fucci 《Calcolo》1968,5(3-4):511-524
The solution of the one-energy group space-independent reactor kinetics equations is obtained in the form of the limit of two monotone bounded sequences of functions {N j ?} and {N j +}, non decreasing and non increasing respectively, defined as $$\begin{gathered} N_{j + 1}^ - = T_1 N_j^ + + T_2 N_j^ - + f \hfill \\ N_{j + 1}^ + = T_1 N_j^ - + T_2 N_j^ + + f \hfill \\ \end{gathered} $$ whereT 1 andT 2 are monotone-type operators, precisely antitone and isotone. In this work a procedure for obtaining the two initial elements,N 0 ? andN 0 +, satisfying the required properties to assure the convergence of the two sequences {N j ?} and {N j +}, is described; moreover, it is proved that the two sequences converge uniformely to the same limit. In addition, some numerical results are presented.  相似文献   

8.
M. M. Cecchi 《Calcolo》1967,4(3):363-368
The numerical integration of integrals of the type dx is carried out through an approximate quadrature formula of the Gauss type where the abscissasx i and the weighting coefficientsA i are evaluated with the requirement that the above formula be exact when thef(x) are polynomials of the highest possible degree.   相似文献   

9.
Function series of the form $$f(x) = \sum\limits_{n = 0}^N {c_n f_n (x)} $$ are considered under the constraintf(x)≥0 in a given intervala≤x≤b. The cone in teh spaceR N+1 of the coefficientsc n which is determined by the positivity constraint is approximated numerically by a polyhedral cone. A numerical estimate for the error involved is given and it is shown how it may be reduced. A special series of Jacobi polynomials is discussed and new estimates for the range of parameters for which this series is non-negative are obtained.  相似文献   

10.
Quadrature formulas based on the “practical” abscissasx k=cos(k π/n),k=0(1)n, are obtained for the numerical evaluation of the weighted Cauchy principal value integrals $$\mathop {\rlap{--} \smallint }\limits_{ - 1}^1 (1 - x)^\alpha (1 + x)^\beta (f(x))/(x - a)){\rm E}dx,$$ where α,β>?1 andaε(?1, 1). An interesting problem concerning these quadrature formulas is their convergence for a suitable class of functions. We establish convergence of these quadrature formulas for the class of functions which are Hölder-continuous on [?1, 1].  相似文献   

11.
Dr. M. Sieveking 《Computing》1972,10(1-2):153-156
An algorithm is given to compute a solution (b 0, ...,b n) of $$\sum\limits_0^n {a_i t^i } \sum\limits_0^n {b_i t^i } \equiv \sum\limits_0^n {c_i t^i } (t^{n + 1} )$$ froma 0, ..., an, c0, ..., cn. It needs less than 7n multiplications, where multiplications with a skalar from an infinite subfield are not counted.  相似文献   

12.
K. J. Förster  K. Petras 《Calcolo》1994,31(1-2):1-33
For ultraspherical weight functions ωλ(x)=(1–x2)λ–1/2, we prove asymptotic bounds and inequalities for the variance Var(Q n G ) of the respective Gaussian quadrature formulae Q n G . A consequence for a large class of more general weight functions ω and the respective Gaussian formulae is the following asymptotic result, $$\mathop {lim}\limits_{n \to \infty } n \cdot Var\left( {Q_n^G } \right) = \pi \int_{ - 1}^1 {\omega ^2 \left( x \right)\sqrt {1 - x^2 } dx.} $$   相似文献   

13.
P. Brianzi  L. Rebolia 《Calcolo》1982,19(1):71-86
A numerical performance of integral form for the linear ordinary differential equations $$y^{(n)} = \sum\limits_{i = 0}^{n - 2} { a_{i + 2} (x) y^{(n - 2 - i)} (x)}$$ is proved. Three numerical experiments are also given.  相似文献   

14.
It is shown that the following modification of the Steffensen procedurex n+1=x n ?k s (x n )f(x n ) (f[x n ,x n ?f(x n )])?1 (n=0,1,...) withk s (x)=(1?z s (x))?1,z s (x)=f(x) 2f[x?f(x),x,x+f(x)]×(f[x,x?f(x)])?2 is quadratically convergent to the root of the equation \(f(x) = (x - \bar x)^p g(x) = 0(p > 0,g(\bar x) \ne 0)\) . Furthermore \(\mathop {\lim }\limits_{n \to \infty } k_s (x_n ) = p\) holds.  相似文献   

15.
We show in this note that the equation αx1 + #x22EF; +αxp?ACβy1 + α +βyq where + is an AC operator and αx stands for x+...+x (α times), has exactly $$\left( { - 1} \right)^{p + q} \sum\limits_{i = 0}^p {\sum\limits_{j = 0}^q {\left( { - 1} \right)^{1 + 1} \left( {\begin{array}{*{20}c} p \\ i \\ \end{array} } \right)\left( {\begin{array}{*{20}c} q \\ j \\ \end{array} } \right)} 2^{\left( {\alpha + \begin{array}{*{20}c} {j - 1} \\ \alpha \\ \end{array} } \right)\left( {\beta + \begin{array}{*{20}c} {i - 1} \\ \beta \\ \end{array} } \right)} } $$ minimal unifiers if gcd(α, β)=1.  相似文献   

16.
H. H. Gonska  J. Meier 《Calcolo》1984,21(4):317-335
In 1972 D. D. Stancu introduced a generalization \(L_{mp} ^{< \alpha \beta \gamma > }\) of the classical Bernstein operators given by the formula $$L_{mp}< \alpha \beta \gamma > (f,x) = \sum\limits_{k = 0}^{m + p} {\left( {\begin{array}{*{20}c} {m + p} \\ k \\ \end{array} } \right)} \frac{{x^{(k, - \alpha )} \cdot (1 - x)^{(m + p - k, - \alpha )} }}{{1^{(m + p, - \alpha )} }}f\left( {\frac{{k + \beta }}{{m + \gamma }}} \right)$$ . Special cases of these operators had been investigated before by quite a number of authors and have been under investigation since then. The aim of the present paper is to prove general results for all positiveL mp <αβγ> 's as far as direct theorems involving different kinds of moduli of continuity are concerned. When applied to special cases considered previously, all our corollaries of the general theorems will be as good as or yield improvements of the known results. All estimates involving the second order modulus of continuity are new.  相似文献   

17.
In a recent series of papers, Goldberg [G1, G2] and Sun and Yuan [SY] studied the L 2-stability of a well-known family of finite difference approximations for the initial-value problem associated with the multispace-dimensional parabolic system $$\frac{{\partial {\text{u(x,}}\;t{\text{)}}}}{{\partial t}} = \sum\limits_{1 \leqslant {\kern 1pt} p{\kern 1pt} \leqslant {\kern 1pt} q{\kern 1pt} \leqslant {\kern 1pt} {\kern 1pt} s} {A_{pq} \frac{{\partial ^2 {\text{u(x,}}\;t{\text{)}}}}{{\partial x_p \partial x_q }}} + \sum\limits_{1 \leqslant {\kern 1pt} p{\kern 1pt} \leqslant {\kern 1pt} s} {B_p \frac{{\partial {\text{u(x,}}\;t{\text{)}}}}{{\partial x_p }} + C{\text{u(x,}}\;t{\text{)}}} $$ where A pq ,B p and C are constant matrices, A pq being Hermitian. In the present paper we discuss these earlier results and complete the underlying theory by answering four open questions.  相似文献   

18.
O. G. Mancino 《Calcolo》1970,7(3-4):275-287
LetX be a point of the realn-dimensional Euclidean space ? n ,G(X) a given vector withn real components defined in ? u ,U an unknown vector withs real components,K a known vector withs real components andA a given reals×n matrix of ranks. Assuming that, for every pair of pointsX 1 , X2of ? n ,G(X) satisfies the conditions $$(G(X_1 ) - G(X_2 ), X_1 - X_2 ) \geqslant o (X_1 - X_2 , X_1 - X_2 )$$ and $$\left\| {(G(X_1 ) - G(X_2 )\left\| { \leqslant M} \right\|X_1 - X_2 )} \right\|$$ wherec andM are positive constants, we prove that a unique solution of the system $$\left\{ \begin{gathered} G(X) + A ^T U = 0 \hfill \\ AX = K \hfill \\ \end{gathered} \right.$$ exists and we show a method for finding such a solution  相似文献   

19.
The author considers Volterra Integral Equations of either of the two forms $$u(x) = f(x) + \int\limits_a^x {k(x - t)g(u(t))dt, a \leqslant } x \leqslant b,$$ wheref, k, andg are continuous andg satisfies a local Lipschitz condition, or $$u(x) = f(x) + \int\limits_a^x {\sum\limits_{j = 1}^m {c_j (x)g_j (t,u(t))dt} ,} $$ wheref,c j , andg j ,j=1,2,...,m, are continuous and eachg j satisfies a local Lipschitz condition in its second variable. It is shown that in each case the respective integral equation can be solved by conversion to a system of ordinary differential equations which can be solved by referring to a described FORTRAN subroutine. Subroutine VE1. In the case of the convolution equation, it is shown how VE1 converts the equation via a Chebyshev expansion, and a theorem is proved, and implemented in VE1, wherein the solution error due to truncation of the expansion can be simultaneously computed at the discretion of the user. Some performance data are supplied and a comparison with other standard schemes is made. Detailed performance data and a program listing are available from the author.  相似文献   

20.
J. M. F. Chamayou 《Calcolo》1978,15(4):395-414
The function * $$f(t) = \frac{{e^{ - \alpha \gamma } }}{\pi }\int\limits_0^\infty {\cos t \xi e^{\alpha Ci(\xi )} \frac{{d\xi }}{{\xi ^\alpha }},t \in R,\alpha > 0} $$ [Ci(x)=cosine integral, γ=Euler's constant] is studied and numerically evaluated;f is a solution to the following mixed type differential-difference equation arising in applied probability: ** $$tf'(t) = (\alpha - 1)f(t) - \frac{\alpha }{2}[f(t - 1) + f(t + 1)]$$ satisfying the conditions: i) $$f(t) \geqslant 0,t \in R$$ , ii) $$f(t) = f( - t),t \in R$$ , iii) $$\int\limits_{ - \infty }^{ + \infty } {f(\xi )d\xi = 1} $$ . Besides the direct numerical evaluation of (*) and the derivation of the asymptotic behaviour off(t) fort→0 andt→∞, two different iterative procedures for the solution of (**) under the conditions (i) to (iii) are considered and their results are compared with the corresponding values in (*). Finally a Monte Carlo method to evaluatef(t) is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号