首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The upland fertilization practice in Africa of placing N fertilizer below the soil surface near the plant might be facilitated through use of urea supergranules (USG). Since little is known about N losses from point-placed urea on light-textured African soils, laboratory studies were conducted in a forced-draft system to determine (a) the influence of soil properties on ammonia loss from USG and (b) to compare N loss from USG with that from broadcast N sources. Ammonia loss from 1.1 g USG placed at a 4-cm soil depth ranged from 2.9 to 62% of the added N on six light-textured soils. Ammonia loss was correlated with soil clay content (r = –0.93**) but not with pH. A more detailed study on a soil from Niger revealed significantly less ammonia loss from either surfaced applied urea (18%) or surface-applied calcium ammonium nitrate (7%) than from USG placed at a 4-cm depth (67%). Amendment of surface-applied urea with 1.7% phenyl phosphorodiamidate (PPD), a urease inhibitor, essentially eliminated ammonia loss (1.9%). An15N balance confirmed that ammonia volatilization was the major loss mechanism for all N sources. The results suggest that point-placed urea may be prone to ammonia volatilization loss on light-textured African soils moistened by frequent light rainfall. In such cases, broadcast application of urea, CAN, or urea amended with PPD may be less prone to N loss.  相似文献   

2.
Initial and residual effects of nitrogen (N) fertilizers on grain yield of a maize/bean intercrop grown on a deep, well-drained Humic Nitosol (66% clay, 3% organic carbon) were evaluated. Enriched (15N) N fertilizer was used to study the fate of applied N in two seasons: using urea (banded) at 50 kg N ha–1 in one season, and15N-enriched urea (banded), calcium ammonium nitrate (CAN, banded), and urea supergranules (USG, point placement) were applied in the other season (different field) at 100 kg N ha–1. Nitrogen fertilizer significantly (P = 0.05) increased equivalent maize grain yield in each season of application with no significant differences between N sources, i.e., urea, CAN, and USG. Profitmaximizing rates ranged from 75 to 97 kg N ha–1 and value: cost ratios ranged from 3.0 to 4.8. Urea gave the highest value: cost ratio in each season. Most (lowest measurement 81%) of the applied N was accounted for by analyzing the soil (to 150 cm depth) and plant material. Measurements for urea, CAN, and USG were not significantly different. The high N measurements suggest low losses of applied N fertilizer under the conditions of the study. Maize plant recovery ranged from 35 to 55%; most of this N (51–65%) was in the grain. Bean plant recovery ranged from 8 to 20%. About 34–43% of the applied N fertilizer remained in the soil, and most of it (about 70%) was within the top soil layer (0–30 cm). However, there were no significant equivalent maize grain increases in seasons following N application indicating no beneficial residual effect of the applied fertilizers.  相似文献   

3.
The15N isotope was used to study the mode of action of individual nitrogen sources in a 30% urea:30% ammonium nitrate: 10% ammonium sulphate:30% filler (w/w) granular fertilizer for perennial ryegrass in a greenhouse pot experiment. The fertilizer consisted of two types of granules, one containing 80% urea and 20% filler and the second containing 48% ammonium nitrate (AN), 16% ammonium sulphate (AS) and 36% filler. In addition the effect of dolomite compared with silica as the filler was investigated on nitrogen recovery from the 30:30:10:30 formulation.Dolomite adversely affected the recovery of nitrate N from the system and evidence suggested that MgCO3 was the active component. Granules containing dolomite resulted in a lower dry-matter yield than those containing silica, however the difference was not significant as nitrate contributed only 20% of the N in the formulation. AN gave the greatest DM yield and urea the lowest with AS being intermediate. The15N budget in shoots, roots and soil indicated that only 65% of the N from urea was recovered at the end of the experiment compared with 86% for AN and 91% for AS. The dry-matter yield of the 30:30:10:30 formulation using silica as the filler was intermediate between urea and AN; however, the apparent N recovery was significantly higher than expected from the sum of the individual components. The use of15N labelling indicated that using separate granules for ammonium N and urea the recovery of urea was improved by 11% in the triple N mixture when both AN and AS were present in the second granule compared to the recovery on its own. The enhanced recovery of urea appeared to be a function of AN and AS acting together as neither source in double combination with urea had any effect on urea N recovery.Urea enhanced the recovery of nitrate N by 10% but decreased the recovery of AS by 6% (in the 30:30:10:30 formulation) in comparison with the single sources on their own. The results indicate that interactions can occur between N sources even when they are physically separated by being in different granules.  相似文献   

4.
The comparative effects of ammonium nitrate (AN), urea or a combined 1:1 (w/w) AN/urea granular fertilizer with two different fillers (CaCO3 or silica) were investigated on the efficiency of dry matter production and15N recovery by perennial ryegrass grown in pots under controlled environmental conditions.There was no significant difference between CaCO3 and silica as the filler and therefore no indication that the presence of CaCO3 in the pellet enhanced N loss from urea. Ammonium nitrate was the most efficient N source and urea the least efficient in terms of all the parameters studied. The15N budget in shoots, roots and soil indicated that only 60% of the nitrogen from urea was recovered at the end of the experiment compared with 95% for AN. However, the % recovery of15N from urea was increased by 17% in the presence of AN whereas the % recovery of AN was decreased by 19% in the presence of urea. The combined 1:1 (w/w) AN/urea source therefore gave intermediate yields between AN and urea alone. The results indicate that an interaction occurred between AN and urea in the granule.  相似文献   

5.
Two modified urea products (urea supergranules [USG] and sulfur-coated urea [SCU]) were compared with conventional urea and ammonium sulfate as sources of nitrogen (N), applied at 58 kg N ha–1 and 116 kg N ha–1, for lowland rice grown in an alkaline soil of low organic matter and light texture (Typic Ustipsamment) having a water percolation rate of 109 mm day–1. The SCU and USG were applied at transplanting, and the whole dose of nitrogen was15N-labeled; the SCU was prepared in the laboratory and was not completely representative of commercial SCU. The SCU was broadcast and incorporated, whereas the USG was point-placed at a depth of 7–8 cm. The urea and ammonium sulfate applications were split: two-thirds was broadcast and incorporated at transplanting, and one-third was broadcast at panicle initiation. All fertilizers except the last one-third of the urea and ammonium sulfate were labeled with15N so that a fertilizer-N balance at flowering and maturity stages of the crop could be constructed and the magnitude of N loss assessed.At all harvests and N rates, rice recovered more15N from SCU than from the other sources. At maturity, the crop recovered 38 to 42% of the15N from SCU and only 23 to 31% of the15N from the conventional fertilizers, urea and ammonium sulfate, whose recovery rates were not significantly different. In contrast, less than 9% of the USG-N was utilized. Fertilizer nitrogen uptake was directly related to the yield response from the different sources. Most of the fertilizer N was taken up by the time the plants were flowering although recovery did increase up to maturity in some treatments.Analysis of the soil plus roots revealed that less than 1% of the added15N was in the mineral form. Between 20 and 30% of the15N applied as urea, SCU, and ammonium sulfate was recovered in the soil plus roots, mainly in the 0–15 cm soil layer. Only 16% of the15N applied as USG was recovered in the soil, and this15N was distributed throughout the soil profile to a depth of 70 cm, which was the lowest depth of sampling.Calculations of the15N balance showed that 46 to 50% of the urea and ammonium sulfate was unaccounted for and considered lost from the system. Only 27 to 38% of the15N applied as SCU was not recovered at maturity, but 78% of the USG application was unaccounted for. The extensive losses and poor plant recovery of USG at this site are discussed in relation to the high percolation rate, which is atypical of many ricegrowing areas.  相似文献   

6.
15N-labelled ammonium sulphate or15N-labelled urea were each applied in solutionat a rate of 30 kg N ha-1 to the surface of 20soil cores (52 mm internal diameter × 100 mm deep)located on a field experiment at the ICARDA station,Tel Hadya, Syria. Recovery of 15N-label in theammonium, nitrate, organic and/or urea-N pools in thesoil was measured on days 0, 1, 2, 5 and 13 afterapplication. Total recovery of 15N was initially100%, but by day 13 after application it had declinedto 51% with urea and 73% with ammonium sulphate.Ammonium nitrate labelled either as ammonium or asnitrate was also applied to the soil surface of 8other cores at the same time. 15N recovery in thefour soil N pools was measured only on day 12 afterapplication. Total recovery of 15N-label was 75%with labelled ammonium and 57% with labelled nitrate.Volatilization of ammonia from this calcareous soil(pH 8.1) is one probable mechanism of N loss fromammonium and urea fertilizers: with nitrate bothleaching beyond the base of the core (i.e. 100 mm) and denitrification were responsible for Nlosses. These large losses of N immediately afterapplication have implications for fertilizermanagement practices.  相似文献   

7.
Confined microplots were used to study the fate of15N-labelled ammonium nitrate and urea when applied to ryegrass in spring at 3 lowland sites (S1, S2 and S3). Urea and differentially and doubly labelled ammonium nitrate were applied at 50 and 100 kg N ha–1. The % utilization of the15N-labelled fertilizer was measured in 3 cuts of herbage and in soil to a depth of 15 cm (soil0–15).Over all rates, forms and sites, the % utilization values for cuts 1, 2, 3 and soil0–15 were 52.4, 5.3, 2.4 and 16.0% respectively. The % utilization of15N in herbage varied little as the rate of application increased but the % utilization in the soil0–15 decreased as the rate of application increased. The total % utilization values in herbage plus soil0–15 indicated that losses of N increased from 12 to 25 kg N ha–1 as the rate of N application was increased from 50 to 100 kg N ha–1.The total % utilization values in herbage plus soil0–15 over both rates of fertilizer N application were 84.1, 80.8 and 81.0% for urea compared with 74.9, 72.5 and 74.4% for all ammonium nitrate forms at S1, S2 and S3 respectively. Within ammonium nitrate forms, the total % utilization values in herbage plus soil0–15 over both rates and all sites were 76.7, 69.4 and 75.7% for15NH4NO3, NH4 15NO3 and15NH4 15NO3 respectively. The utilization of the nitrate moiety of ammonium nitrate was lower than the utilization of the ammonium moiety.The distribution of labelled fertilizer between herbage and soil0–15 varied with soil type. As the total utilization of labelled fertilizer was similar at all sites the cumulative losses due to denitrification and downward movement appeared to account for approximately equal amounts of N at each site.  相似文献   

8.
The compound N-(n-butyl) thiophosphoric triamide (NBPT) was found to be a more effective ureas inhibitor than phenyl phosphorodiamidate (PPDA) in flooded soils when compared at concentrations of from 0.5 to 5% of the weight of urea. It allowed essentially no ammoniacal-N to acumulate in the floodwater when added at 0.5% of the weight of urea. The fate of urea was also determined in a flooded, unplanted soil with NBPT used as an inhibitor at a rate of 2% by weight of urea. At 41 days, fertilizer-N loss without the inhibitor was 73.4%, whereas with NBPT, 34.7% of the fertilizer was lost, presumably all by denitrification. With NBPT, urea hydrolysis was not inhibited below a 1 cm depth in the soil and most of the N (35.0%) accumulated as exchangeable NH 4 + -N. Except for 15.0% of the fertilized accumulated as organic-N on the soil surface layer, immobilized N accounted for only an additional 7.0% in the soil at 22 days. Although the N saved from NH3 volatilization loss obviously is eligible for denitrification losses, denitrification apparently was not enhanced to an appreciable extent by use of the inhibitor in that total losses were 15.7% at 22 days.  相似文献   

9.
Laboratory incubation and greenhouse experiments were conducted to investigate the comparative effectiveness of urea and ammonium sulphate in opium poppy (Papaver somniferum L.) using15N dilution techniques. Fertilizer treatments were control (no N), 600 mg N pot–1 and 1200 mg N pot–1 (12 kg oven dry soil) applied as aqueous solution of urea or ammonium sulphate. Fertilizer rates, under laboratory incubation study were similar to that under greenhouse conditions. A fertilizer15N balance sheet reveals that N recovery by plants was 28–39% with urea and 35–45% with ammonium sulphate. Total recovery of15N in soil-plant system was 77–82% in urea. The corresponding estimates for ammonium sulphate were 89–91%. Consequently the unaccounted fertilizer N was higher under urea (18–23%) as compared to that in ammonium sulphate (9–11%). The soil pH increased from 8.2 to 9.4 with urea whereas in ammonium sulphate treated soil pH decreased to 7.3 during 30 days after fertilizer application. The rate of NH3 volatilization, measured under laboratory conditions, was higher with urea as compared to the same level of ammonium sulphate. The changes in pH of soil followed the identical trend both under laboratory and greenhouse conditions.  相似文献   

10.
A pot experiment was conducted in a greenhouse to assess the effect of rate and time of N application on yield and N uptake of wetland rice grown on a Rangsit acid sulfate soil (Sulfic Tropaquepts). Response of rice at N rates of 800, 1600 and 2400 mg N/pot (5 kg of soil) was compared between urea and ammonium sulfate when applied at two times: (i) full-rate basal at transplanting and (ii) one half at transplanting and one half at the PI stage. In addition, labelled15N sources were applied either at transplanting or at the PI stage to determine the nitrogen balance sheet in the soil/plant system.No significant difference in grain and straw yields between urea and ammonium sulfate at low rate was observed. At the higher N rates, urea produced higher yields than did ammonium sulfate regardless of timing. The highest yields were obtained when urea at the high N rate was applied either in a single dose or a split dose while lowest yields were observed particularly when ammonium sulfate at the same rate was applied. Split application of N fertilizer was shown to be no better than a single basal application. The occurrence of nutritional disorder, a symptom likely reflected by high concentration of Fe (II) in combination with soluble Al, was induced with high rate of ammonium sulfate.In terms of fertilizer N recovery by using15N-labelling, ammonium sulfate was more efficient than urea when both were applied at transplanting. In contrast, application at the PI stage resulted in higher utilization of urea than of ammonium sulfate. The recovery of labelled N in the soil was higher with urea than with ammonium sulfate when the two sources were applied at transplanting, while the opposite result was obtained when the same fertilizers were applied at the PI stage. The losses from urea and ammonium sulfate were not different when these fertilizers were applied at transplanting but loss from urea was higher than that from ammonium sulfate when both were applied at the PI stage.  相似文献   

11.
A glasshouse experiment was conducted to study the balance sheet of15N labelled urea at three rates (zero, 31.48 and 62.97 mmol N pot–1) applied to rice under flooded conditions with two moisture regimes (continuous and alternate flooding) using three Australian vertisols differing in organic carbon level. Walkley-Black organic carbon values for the three soils were 0.65, 2.13 and 3.76 for the low carbon (LC), medium carbon (MC) and high carbon (HC) soils respectively.Rice dry weight and nitrogen uptake was significantly affected by N fertilizer rates, water regimes and soils. Alternate flooding gave much lower dry weight and nitrogen uptake than continuous flooding and the LC soil gave lower dry weight and nitrogen uptake than for the MC and HC soils.Recovery of15N labelled urea fertilizer in the rice plant was low (15.4 to 38.4%) and the15N urea not accounted for in the plant or soil and presumed lost was high (36.2 to 76.0%). Recovery was lower and loss higher under alternate flooding and for the LC soil. There was no effect of fertilizer rate. The results obtained stress the need for careful management to reduce losses of nitrogen fertilizer, particularly for soils low in organic carbon.  相似文献   

12.
Five pot experiments were conducted with wheat and rice in a net house to study the effect of lime nitrogen (LN, contains about 55% calcium cyanamide) amendment rates on the efficiency of urea, the recovery urea-15N, the efficiency of the three nitrogen fertilizers(NF), on the efficiency of urea in the three soils, and on NO 3 - -N leaching from a flooded soil. A rate of LN-N of 5–8% of applied fertilizer N increased the recovery of labeled urea-N by 9.42%. The effect of LN on the efficiency of NF was urea > ammonium sulfate > ammonium chloride. Under flooded conditions, LN decreased NO 3 - formation and leaching.Responses of several crops to LN amended fertilizers were also studied in field experiments. At equal NPK applications, the efficiency of basal applications to rice, wheat, corn, potatoes, soybean, peanut, grapes, peaches, melon and watermelon were bette r with LN than without. Efficiency with a basal fertilizer for rice or wheat with LN were the same as with the same fertilizer without LN applied in split applications.  相似文献   

13.
A field experiment was conducted on an acid sulfate soil in Thailand to determine the effect of N fertilization practices on the fate of fertilizer-N and yield of lowland rice (Oryza sativa L.). A delayed broadcast application of ammonium phosphate sulfate (16-20-0) or urea was compared with basal incorporation of urea, deep placement of urea as urea supergranules (USG), and amendment of urea with a urease inhibitor. Deep placement of urea as USG significantly reduced floodwater urea- and ammoniacal-N concentrations following N application but did not reduce N loss, as determined from an15N balance, in this experiment where runoff loss was prevented. The urease inhibitor, phenyl phosphorodiamidate (PPD), had little effect on floodwater urea- and ammoniacal-N, and it did not reduce N loss. The floodwater pH never exceeded 4.5 in the 7 days following the first N applications, and application of 16-20-0 reduced floodwater pH by 0.1 to 0.3 units below the no-N control. The low floodwater pH indicated that ammonia volatilization was unimportant for all the N fertilization practices. Floodwater ammoniacal-N concentrations following application of urea or 16-20-0 were greater on this Sulfic Tropaquept than on an Andaqueptic Haplaquoll with near neutral pH and alkaline floodwater. The prolonged, high floodwater N concentrations on this Sulfic Tropaquept suggested that runoff loss of applied N might be a potentially serious problem when heavy rainfall or poor water control follow N fertilization. The unaccounted-for15N in the15N balances, which presumably represented gaseous N losses, ranged from 20 to 26% of the applied N and was unaffected by urea fertilization practice. Grain yield and N uptake were significantly increased with applied N, but grain yield was not significantly affected by urea fertilization practice. Yield was significantly lower (P = 0.05) for 16-20-0 than for urea; however, this difference in yield might be due to later application of P and hence delayed availability of P in the 16-20-0 treatment.  相似文献   

14.
Poor N fertilizer use efficiency by flooded rice is caused by gaseous losses of N. Improved fertilizer management and use of nitrification inhibitors may reduce N losses. A microplot study using15N-labelled urea was conducted to investigate the effects of fertilizer application method (urea broadcast, incorporated, deep-placed) and nitrification inhibitor [encapsulated calcium carbide (ECC)] treatments on emission of N2+N20 and total loss of applied N on a grey clay near Griffith, NSW, Australia. Both incorporation and deep placement of urea decreased N2+N2O emission compared to urea broadcast into the floodwater. Addition of ECC significantly (P < 0.05) reduced emission of N2+N20 from incorporated or deep-placed urea and resulted in increased exchangeable ammonium concentrations in the soil in both treatments. Fifty percent of the applied N was lost when urea was broadcast into the floodwater. Total N loss from the applied N was significantly (P < 0.05) reduced when urea was either incorporated or deep placed. In the presence of ECC the losses were reduced further and the lowest loss (34.2% of the applied N) was noted when urea was deep-placed with ECC.  相似文献   

15.
The release of non-exchangeable (fixed) NH 4 + and the importance of exchangeable NH 4 + at transplanting (initial exchangeable NH 4 + ) for rice (Oryza sativa L.) growth was studied in representative lowland rice soils of the Philippines.The experiments showed that initial exchangeable ammonium behaved like fertilizer N and thus may serve as a valuable guideline for nitrogen fertilizer application rates when calculated on a hectare basis. By using the15N tracer technique it was found that nonexchangeable ammonium in soil may contribute to the nitrogen supplying capacity of lowland rice soils. Fixation and release of NH 4 + seem to be more dependent on the form of clay minerals than on clay content. In soils rich in vermiculite non-exchangeable ammonium should be considered together with other available N sources such as exchangeable ammonium for N fertilizer recommendations for lowland rice.  相似文献   

16.
The effect of the timing of N fertilizer application on the uptake and partitioning of N within the crop and the yield of tubers has been studied in two experiments. In 1985 either none, 8 or 12 g N m–2 was applied and in 1986 none, 12 or 18 g N m–2. Fertilizer N was applied either at planting, around the time of tuber initiation or half at planting and the remainder in four foliar sprays of urea during tuber bulking.15N-labelled fertilizer was applied to measure the recovery of fertilizer N in the crops.There was an apparent pre-emergence loss of nitrate from the soil when N was applied at planting in 1986, thereby reducing the efficiency of fertilizer use. Applying the N at tuber initiation delayed and reduced the accumulation of N in the canopy compared with crops receiving all their fertilizer at planting. Foliar sprays of urea slightly increased both tuber yields and tuber N contents when compared to a single application at planting. The proportion of the fertilizer N recovered in the crop was little affected by the rate of N application, but a greater proportion of foliar-applied N was recovered than N broadcast at planting, due partly to pre-emergence losses of nitrate in 1986. It is suggested that late applications of N was foliar sprays can be of benefit to crops with a long growing season and reduce environmental losses of N.  相似文献   

17.
The effect of topsoil moisture content at the time of nitrogen fertilization and distribution of precipitation following N fertilization on volatile loss of surfaceapplied fertilizer N was studied in two greenhouse experiments using15N-labeled fertilizers. Loss of applied NO 3 - -N was small compared with loss of urea-N and diammonium phosphate (DAP)-N; this suggests that NH3 volatilization was the major pathway of N loss for urea and DAP. Loss of applied NO 3 - -N averaged less than 6% of that applied regardless of initial topsoil moisture or amount of precipitation. Increased initial topsoil moisture content increased losses of urea-N greatly but losses of DAP-N only slightly. Increasing depths of precipitation, added five days after N fertilization, greatly decreased loss of urea-N but had no effect on the loss of DAP-N. Variations in moisture and precipitation treatments caused losses of urea-N to vary from 40 to 6% of that applied in a slightly acidic silty loam and from 26 to 11% in a calcareous clay. Moisture and precipitation treatments caused volatilization of DAP-N to vary from 20 to 10% in the silty loam and from 40 to 27% in the calcareous clay. In a second experiment, moisture and precipitation conditions affected N loss from urea as in the previous experiment. Addition of phenylphosphorodiamidate (PPDA), a known urease inhibitor, to urea at 20 g kg–1 resulted in only a small reduction of N loss in the calcareous clay soil used.It was concluded that soil moisture at the time of N fertilization and precipitation following N fertilization can greatly affect volatile loss of fertilizer N. Since the effect of moisture on N loss is not the same for all N sources, moisture parameters are expected to affect the ranking of N sources by their susceptibility to N loss and their uptake by plants in field experiments. Results obtained suggest some management practices by which fertilizer N might be conserved. The great effect of moisture and precipitation on N loss in these studies underscores the need for detailed meteorological records for field sites of N trials.  相似文献   

18.
A field experiment was conducted on a poorly-drained Aeric Paleaquult in northeastern Thailand to determine the effect of N and S fertilizers on yield of rainfed lowland rice (Oryza sativa L.) and to determine the fate of applied15N- and35S-labeled fertilizers. Rice yield and N uptake increased with applied N but not with applied S in either sulfate or elemental S (ES) form. Rice yield was statistically greater for deep placement of urea as urea supergranules (USG) than for all other N fertilizer treatments that included prilled urea (PU), urea amended with a urease inhibitor (phenyl phosphorodiamidate), and ammonium phosphate sulfate (16% N, 8.6% P).The applied15N-labeled urea (37 kg N ha–1) not recovered in the soil/plant system at crop maturity was 85% for basal incorporation, 53% for broadcast at 12 days after transplanting (DT), 27% for broadcast at 5–7 days before panicle initiation (DBPI), and 49% for broadcast at panicle initiation (PI). The basal incorporated S (30 kg ha–1) not recovered in the soil/plant system at crop maturity was 37% for sulfate applied as single superphosphate (SSP) and 34% for ES applied as granulated triple superphosphate fortified with S (S/GTSP). Some basal incorporated15N and35S and some broadcast15N at PI was lost by runoff. Heavy rainfall at 3–4 days after basal N incorporation and at 1 day after PI resulted in water flow from rice fields at higher elevation and total inundation of the 0.15-m-high15N and35S microplot borders. Unrecovered15N was only 14% for 75 kg urea-N ha–1 deep placed as USG at transplanting. This low N loss from USG indicated that leaching was not a major N loss mechanism and that deep placement was relatively effective in preventing runoff loss.In order to assess the susceptibility of fertilizer-S to runoff loss, a subsequent field experiment was conducted to monitor35S activity in floodwater for 42 days after basal incorporation of SSP and S/GTSP. Maximum35S recoveries in the floodwater were 19% for SSP after 7 days and 7% for S/GTSP after 1 day. Recovery of35S in floodwater after 14 days was 12% for SSP and 3% for S/GTSP.This research suggests that on poorly drained soils with a low sorption capacity, a sizeable fraction of the fertilizer S and N remains in the floodwater following application. Runoff could then be an important mechanism of nutrient loss in areas with high probability for inundation following intense rainfall.  相似文献   

19.
Ammonia volatilization from fertilizers applied to irrigated wheat soils   总被引:1,自引:0,他引:1  
A series of experiments using flow chambers was undertaken in the field to investigate the effects of stubble and fertilizer management, soil moisture and precipitation on ammonia volatilization following nitrogen application on chromic luvisols. In the first factorial experiment, urea at 100 kg N ha–1 was applied to the soil surface one, three and six days following irrigation; there were four rice stubble management systems comprising stubble burnt, stubble burnt then rotary hoed, stubble rotary hoed into the soil and stubble retained on the surface. Cultivation almost halved ammonia loss. The higher loss from uncultivated plots was ascribed to an alkaline ash bed on burnt plots, and to higher soil moisture and some retention of urea prills in the crop residue above the soil surface of the stubble retention plots. Average volatilization over a 12 day period following urea application from plots fertilizer one, three or six days after irrigation was 16, 15 and 4 kg N ha–1, respectively. Daily application of up to 1.7 mm of water did not reduce volatilization and 35 kg N ha–1 was lost within five days of fertilization. Daily precipitation of 6.8 mm reduced loss to 14 kg N ha–1. This quantity of rain is uncommon in the region and it was concluded that showery conditions are unlikely to reduce volatilization. The third experiment demonstrated that the quantity of stubble on the soil surface had no effect on volatilization, and all plots lost 25% of applied nitrogen. In the fourth experiment, 100 kg N ha–1 as urea or ammonium nitrate was either broadcast onto the surface or stubble retention plots, or placed, and partly covered to simulate topdressing with a disc implement. Partial burial of urea reduced ammonia volatilization from 36 to 7 kg N ha–1, while partial burial of ammonium nitrate reduced loss from 4 to 0 kg N ha–1.  相似文献   

20.
Field trials were carried out to study the fate of15N-labelled urea applied to summer maize and winter wheat in loess soils in Shaanxi Province, north-west China. In the maize experiment, nitrogen was applied at rates of 0 or 210 kg N ha–1, either as a surface application, mixed uniformly with the top 0.15 m of soil, or placed in holes 0.1 m deep adjacent to each plant and then covered with soil. In the wheat experiment, nitrogen was applied at rates of 0, 75 or 150 kg N ha–1, either to the surface, or incorporated by mixing with the top 0.15 m, or placed in a band at 0.15 m depth. Measurements were made of crop N uptake, residual fertilizer N and soil mineral N. The total above-ground dry matter yield of maize varied between 7.6 and 11.9 t ha–1. The crop recovery of fertilizer N following point placement was 25% of that applied, which was higher than that from the surface application (18%) or incorporation by mixing (18%). The total grain yield of wheat varied between 4.3 and 4.7 t ha–1. In the surface applications, the recovery of fertilizer-derived nitrogen (25%) was considerably lower than that from the mixing treatments and banded placements (33 and 36%). The fertilizer N application rate had a significant effect on grain and total dry matter yield, as well as on total N uptake and grain N contents. The main mechanism for loss of N appeared to be by ammonia volatilization, rather than leaching. High mineral N concentrations remained in the soil at harvest, following both crops, demonstrating a potential for significant reductions in N application rates without associated loss in yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号