首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
以线性聚苯乙烯(PS)为膜材料,采用Breath Figures法制备了高度规整的蜂窝状结构多孔膜.研究了溶液浓度、环境湿度、气体吹扫速度及不同溶剂对多孔膜结构的影响.结果表明,相比于苯和二氯甲烷,氯仿作为溶剂因其挥发度适宜,PS浓度在20~80mg/mL的铸膜溶液可形成规整的蜂窝状结构多孔膜,且膜孔分布均匀、大小均一;制膜的湿度需高于环境湿度,但随着湿度的增加孔径增大;气体吹扫速度可在400~1000mL/min范围,但吹扫速度较大时孔径略有降低.该膜可作为固定诸如辣根过氧化酶等活性酶的载体,用于酶催化反应.  相似文献   

2.
以聚醚砜(PES)为材料通过水蒸汽辅助法制备蜂窝状多孔膜,利用扫描电镜(SEM)观察膜表面形貌特征.研究溶剂、铸膜液浓度和湿度等因素对形成多孔膜结构的影响,通过控制铸膜液浓度、湿度等因素来控制膜的表面形貌及其所成蜂窝状孔的大小.实验结果表明,高湿度环境和具有一定浓度的聚合物溶液是制备蜂窝状多孔膜的必要条件;溶剂的挥发性是形成规整蜂窝状孔结构的关键因素,形成蜂窝状多孔膜的最佳条件为溶剂CH_2Cl_2,相对湿度93.5%,铸膜液中PES质量分数为2%,注射量为60μL.  相似文献   

3.
以单组分聚碳酸酯(PC)为膜材质,在一定的湿度环境下,利用Breath Figure法在玻璃基板上成功制备了蜂窝状孔结构的聚碳酸酯多孔膜。研究了溶剂、溶液浓度和湿度对所成多孔膜结构和形貌的影响。实验结果表明,采用二氯甲烷为溶剂所制得的孔结构规整,排列均匀紧密,孔径大小为(3.30±0.19)μm,而以三氯甲烷为溶剂只能得到孔径大小不均且无紧密排列的孔。环境湿度从43%增加到91%,孔径大小由(2.28±0.63)μm增加到(9.07±1.42)μm,且湿度与孔大小基本上呈现一阶线性关系,通过理论推导得出直线斜率为0.15μm/%,即在此体系中湿度每增加1%,所形成的孔大小增加0.15μm。  相似文献   

4.
水蒸气辅助法制备LA-GA共聚物蜂窝状多孔膜   总被引:3,自引:0,他引:3  
以D,L-丙交酯(LA)-乙交酯(GA)共聚物为膜材质,在高湿度气氛环境中使用溶液浇铸的方法在固体基板上制得具有蜂窝状孔结构的聚合物膜.发现不同组成比的LA—GA共聚物的亲水性对形成蜂窝状结构具有关键的影响,同时这种蜂窝状结构可以通过改变成膜条件加以有效控制.  相似文献   

5.
以分子构型对聚丙烯疏水微孔膜在热致相分离制膜过程中的影响规律为研究对象,考查了3种分子构型的聚丙烯成膜后的微观形态和综合分离性能.结果表明:由于热致相分离制膜过程中不同分子构型的聚丙烯的结晶行为不同,等规聚丙烯(iPP)易于形成规则的蜂窝状球晶,具有较好的平均孔径,而无规聚丙烯(aPP)和间规聚丙烯(sPP)易于形成致密的蜂窝状结构,等规聚丙烯和无规聚丙烯两种结构共混膜增大了等规聚丙烯的平均孔径和孔隙率,有助于提高其通量及机械稳定性,等规聚丙烯和无规聚丙烯共混膜渗透通量达20.30 kg/(m~2·h),截留率均超过99.99%.  相似文献   

6.
聚亚苯基砜(PPSU)是一种具有高机械强度、热稳定性和耐化学性的膜材料,而利用水滴模板法制备蜂窝状有序多孔膜是分子自组装领域一个极大的发展。通过考察聚合物浓度、溶剂和添加剂等因素对蜂窝状有序多孔PPSU膜孔径的影响。结果表明:当聚合物浓度从20g/L上升到70g/L时,平均膜孔径由11.5μm减小到4.4μm,呈下降趋势;相比CH_2Cl_2和CH_2Cl_2/CHCl_3共混溶液,CHCl_3是最佳溶剂;丙酮作为添加剂,当丙酮与CHCl_3溶剂比由0.1∶20增加到0.5∶20时,膜孔径由8.9μm增加到13.3μm,但膜孔数量会减少。  相似文献   

7.
选择聚苯醚作为锂离子电池用耐高温隔离膜制备膜材料,以环己醇为溶剂,采用热致相分离法(TIPS)制备聚苯醚微孔膜。绘制了聚苯醚/环己醇体系的热力学相图,并研究了聚合物含量、冷却速度、结晶粗化时间等对最终微孔膜形态的影响。聚苯醚/环己醇体系冷却时存在液-液相分离区域,偏晶点约为57.5%。微孔大小随着聚合物含量与冷却速率的增大而变小。对聚苯硫醚进行了充分的晶体粗化,将产生大量大颗粒球晶,蜂窝状微孔减少。研究表明,选择合适的成膜条件及配方,可以制备具有蜂窝状微孔且孔径均匀、孔径范围为0.1μm~1μm的聚苯醚微孔膜,可适用于锂离子电池隔离膜。  相似文献   

8.
对聚偏氟乙烯(PVDF)/碳酸二苯酯(DPC)体系,采用热致相分离(TIPS)法制备了PVDF微孔膜.通过稀释剂的溶度参数对体系的相容性进行分析,热力学相图和不同PVDF质量浓度下制备的微孔膜断面照片均证明该体系具有较宽的液-液相分离区.PVDF/DPC体系偏晶点对应的PVDF浓度约为质量分数56%,低于此浓度体系降温后先发生液-液相分离,随着PVDF浓度的增大,微孔膜断面结构由双连续结构转变为蜂窝状结构,且膜孔孔径减小,高于此浓度体系降温后只发生固-液相分离,微孔膜断面呈块状紧密堆积结构.较快的冷却速率有利于低PVDF浓度时较小孔径膜和高PVDF浓度时较小球粒尺寸膜的生成.  相似文献   

9.
采用实验室自制的以二苯甲酮四羧酸二酐(BTDA)和3,3-二甲基-4,4-二氨基二苯甲烷(DMMDA)为单体合成的可溶性聚酰亚胺BTDA-DMMDA为成膜材料制备蜂窝状有序多孔膜,研究不同湿气氛围、相对湿度大小以及固体基板等因素对膜孔形态的影响,并探讨多孔膜表面被剥离前后的亲疏水性变化.结果表明,通过改变环境的相对湿度实现了膜孔径从400nm到2μm的动态调控;亲水性好的固体基板更有利于规整多孔膜的构筑;多孔膜表层剥离后其表面接触角得以大大提高,在超疏水表面有潜在的应用前景.  相似文献   

10.
以单一组分醋酸纤维素(CA)为成膜材质,不添加任何添加剂条件下,利用水蒸气辅助法层-层自组装制备了三维蜂窝状CA多孔膜。利用扫描电镜观察了多孔膜形貌;研究了溶剂、环境湿度和浓度等因素对所成多孔膜结构影响。实验结果表明,以二氯甲烷为溶剂,制备得到的孔结构规整、排列紧密;环境湿度由43%增加到91%,孔径大小由(1.36±0.24)μm增加到(3.71±0.18)μm;CA的质量分数为1%~2%有利于规整孔的形成。扫描电镜断面观察发现CA膜内部全部成孔,且内部孔径大小为(1.09±0.13)μm,约为表面孔径大小的一半。利用界面能最小化理论解释了三维蜂窝孔的形成机理。此三维多孔膜有利于细胞的粘附、铺展、分化和增殖,可作为一种良好的组织工程支架材料使用。  相似文献   

11.
以漆酚铜聚合物(UCP)有机溶液为铸膜液,采用Breath Figures法制备漆酚铜聚合物多孔膜,探讨了溶剂、环境相对湿度和潮湿气体流速等因素对多孔膜形貌的影响,并使用红外光谱和扫描电镜等进行表征。结果表明,以二硫化碳为溶剂,在静态(潮湿气体流速为0mL/min,湿度为95%)或动态(潮湿气体流速为400mL/min,湿度为85%)时,均可制得孔分布均匀、孔型规整、优良耐热性和耐酸碱性的疏水性UCP多孔膜,其平均孔径分别为1.5和0.85μm。  相似文献   

12.
以3,3′-二氨基联苯胺和4,4′-二羧基二苯醚为原料,通过亲核缩聚合成了分子主链上带有醚键结构且具备较好溶解性的聚苯并咪唑,通过核磁共振和红外光谱确定其化学结构.接着利用水蒸汽诱导相分离法制备了系列具有海绵状孔结构的多孔膜,用扫描电子显微镜观察其形貌结构.详细考察了溶剂种类、成膜时间、温度、湿度以及聚合物溶液浓度等因素对膜结构的影响.结果表明,在温度80℃、相对湿度60%时,以甲磺酸为溶剂可使聚苯并咪唑膜出现腔包状孔结构;以N,N-二甲基甲酰胺和N,N-二甲基乙酰胺为溶剂可使聚苯并咪唑膜出现海绵状孔结构;而二甲基亚砜、N-甲基吡咯烷酮这两种溶剂不能使其出现多孔结构.以N,N-二甲基乙酰胺为溶剂时,聚苯并咪唑膜出现海绵状孔结构的成膜时间应不小于10min,成膜湿度应不小于50%,膜表面和断面孔径随着聚合物溶液浓度的增加而减小,底面也越来越致密.温度一定时,膜表面和断面孔径随着湿度的增加而减小;湿度一定时,膜表面和断面孔径随着温度的增加而减小.  相似文献   

13.
重点考察了溶剂蒸发时间、凝胶介质温度及环境相对湿度等动力学因素对PVC/PMMA合金膜的渗透、分离性能的影响.结果表明:随环境相对湿度、凝胶浴温度增大,合金膜的平均孔径增大,水通量上升;蒸发时间延长,合金膜的平均孔径及水通量出现1个最大值.  相似文献   

14.
采用低温等离子体接枝技术改性聚偏氟乙烯膜(PVDF),在PVDF膜表面引入疏水性单体苯乙烯,达到改变膜表面孔径的大小和孔径分布的目的.通过傅立叶红外光谱仪(FTIR-ATR)对改性前后的PVDF膜表面进行了结构分析,考察了PVDF膜接枝前后官能团的变化.采用示差扫描量热仪(DSC)分析了PVDF改性前后膜的孔径分布,考察了改性条件对膜孔径大小和分布的影响.通过扫描电子显微镜(SEM)和原子力显微镜(AFM)观测了PVDF膜改性前后表面形貌的变化.研究了接枝温度、接枝时间等接枝条件对PVDF改性膜纯水通量的影响.结果表明,随着照射时间和接枝时间的延长,PVDF改性膜的孔径分布变窄,纯水通量下降,接枝率提高.  相似文献   

15.
采用一锅逐步加料的原子转移自由基聚合方法(ATRP)制备了一种蝌蚪型多面体低聚倍半硅氧烷(POSS)丙烯酸酯嵌段共聚物, 并用静态呼吸图法制备该共聚物蜂窝状结构的多孔膜, 研究成膜条件如溶剂种类、聚合物浓度、相对湿度等对聚合物多孔膜形貌的影响, 以及空气/硅片、空气/水和空气/冰3种成膜界面对膜形貌的影响。结果表明, 在空气/硅片界面上, 以三氯甲烷为溶剂, 环境相对湿度为80%, 浓度为20 mg·mL-1时, 可形成圆形孔的多孔膜, 孔排列成六方形; 在相同的条件下在空气/水和空气/冰界面上均可制备出类似规整形貌的多孔结构, 但多孔膜的孔径、孔间距有很大的不同, 在空气/冰界面上的孔径更小、孔间距更窄。这种多孔膜具有良好的疏水性, 且其接触角随着孔径的减小而增大; 该多孔膜还具有良好的耐强酸强碱性和耐热性能。  相似文献   

16.
纳米氧化铝有序多孔膜制备工艺研究   总被引:1,自引:0,他引:1  
为了获得大面积有序孔排列以及不同孔径的氧化铝膜,采用二次阳极氧化法可制备大面积有序铝阳极氧化多孔(AAO)膜,着重研究氧化电压、氧化时间、电解液浓度以及扩孔时间对AAO膜孔径大小、膜层厚度和形貌结构的影响,用X射线粉末衍射(XRD)仪进行物相分析,利用扫描电子显微镜(SEM)表征多孔膜的形貌.结果表明,在700 ℃以下条件下AAO膜以无定形态存在,经800 ℃退火后无定形氧化铝转化为γ-Al2O3,多孔膜随电压和电解液浓度增加而增大,经H3PO4溶液扩孔后可获得较大孔径模板,扩孔时间与孔径变化呈近似线性关系.为满足应用需求的AAO膜的制备提供了依据.  相似文献   

17.
采用非溶剂致相分离(NIPS,nonsolvent induced phase separation)法制备小孔径磺化聚醚砜-聚醚砜(SPES-PES)共混超滤(UF)膜,对其进行性能表征,讨论溶剂、聚合物浓度、聚合物配比对膜性能的影响.结果表明,溶剂对膜性能的影响较大,用N,N二甲基乙酰胺(DMAc)制得的UF膜通量和截留率相对来说都比较好;随着聚合物SPES-PES浓度的增大,水通量减小,对PEG10000的截留率先增大再基本保持不变;根据实验结果,共混UF膜的截留分子质量(MWCO)小于6 000Da,其为负电荷小孔径共混UF膜.根据Matlab计算,共混UF膜的孔径为1.98nm,其MWCO为3 060Da.  相似文献   

18.
选择低密度聚乙烯(LDPE)为主体材料,二苯醚(DPE)为稀释剂,研究了淬冷温度、粗化时间等影响液滴生长的动力学因素对热诱导相分离法(TIPS)制备LDPE/DPE微孔膜结构的影响.结果表明,在相同粗化时间的条件下,随着LDPE/DPE体系冷却温度的逐渐升高,孔径逐渐变大.对于质量百分数为20%LDPE/DPE体系,在结晶温度以下(0 ℃、30 ℃、60 ℃)粗化时,温度对微孔膜的孔径影响较小.而在90 ℃的恒温条件粗化时,体系始终处在液-液相分离区域,最终得到微孔膜的孔径接近5 μm.在结晶温度以下(60 ℃)进行恒温粗化,粗化时间对微孔膜的孔径影响不大;而在结晶温度以上(90 ℃)进行恒温粗化时,则是随着粗化时间的延长,微孔膜的孔径逐渐变大.  相似文献   

19.
采用平均粒径为300nm的Al_2O_3粉体,通过超声分散配制成稳定的制膜液,基于Hagen-Poiseuille和Darcy方程的理论计算,选择在平均孔径为1μm的载体上进行浸浆涂膜,经一次涂覆制备出无粗孔缺陷的Al_2O_3微滤膜.研究表明,制膜液的固含量、黏度、浸浆时间对膜厚有重要影响.当超声时间在20 min以上,膜层厚度大于40μm,烧结温度为1 050℃,制备的微滤膜平均孔径为100nm,最大孔径为300nm左右,孔径分布窄,渗透率在4 000L/(m~2·h·MPa)左右.进一步以该微滤膜作为底膜,制备出了小孔径氧化铝(Al_2O_3)超滤膜和氧化锆(ZrO_2)纳滤膜.平均孔径为1μm的支撑体大大简化了纳滤膜的制备工艺流程,降低了能耗,提高了陶瓷纳滤膜的实际应用价值.该工作为非对称管式纳滤膜的制备及产业化提供了简单高效的方法.  相似文献   

20.
研究了以中间相炭微球为原料,羧甲基纤维素为添加剂制备管式炭膜过程中膜孔的形成及控制.扫描电子显微镜(SEM)分析表明,炭膜中的孔隙主要是由微球堆积的间隙和粘结剂高温分解形成的.热重分析(TG)和气泡法孔径测试结果表明,随着添加剂用量的减少和升温速率的提高,炭膜孔径减小;同时低于800℃炭化处理能够显著增加炭膜孔径.浸渍液浓度的增加和浸渍次数的增加均能减小炭膜平均孔径,说明制备工艺条件的控制是调整膜孔结构的有效手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号