首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
基于悬臂式掘进机机身位姿检测系统,提出了一种悬臂式掘进机机身位姿误差消除策略:根据悬臂式掘进机机身位姿检测系统所采集的数据,判断各方向位姿误差的大小;当误差较大时,通过控制履带、前铲板与后支撑对悬臂式掘进机整体进行调整,减小机身各方向误差;当误差减小到截割臂的控制补偿范围,根据当前位姿误差设定截割轮廓的正确位置并进行自动截割;解算出各方向剩余位姿误差的补偿量,根据补偿量在自动刷帮过程中控制截割断面的边界位置。该策略对实现自动定向掘进和掘进远程控制具有一定的参考价值。  相似文献   

2.
基于DSP的航姿系统多传感器信息融合技术   总被引:2,自引:0,他引:2  
设计了基于DSP的专用导航计算机,并以此为硬件平台,采集陀螺仪、加速度计、磁航向传感器和速度传感器信号,利用卡尔曼滤波技术进行多传感器信息融合,成功搭建了低成本小型航姿系统。针对该航姿系统的特点,设计了导航计算机程序快速更新软件,对卡尔曼滤波器进行低阶处理。针对导航计算机“数字信号处理器(DSP)+单片机(MCU)”的特殊结构,设计了合理的多传感器信息融合程序。实验证明:航姿系统利用多传感器信息融合技术,使用自行研制的专用导航计算机平台,姿态误差小于0.2,°航向误差小于0.5°,且大大减小了系统成本、体积和功率,具有实际应用价值。  相似文献   

3.
轮式移动机器人组合导航方法及试验研究   总被引:5,自引:0,他引:5  
该文提出了以惯性导航为基础,磁感应器修正的移动机器人组合导航方法。该方法以陀螺仪、磁感应器和里程计作为导航信息的检测器件,每隔一定的距离,利用磁感应器检测到的信息对陀螺仪和里程计进行修正,使得移动机器人能够精确定位、长时间稳定运行。一方面,消除了纯惯性导航随时间增长累积的误差;另一方面,对外界环境有较强的抗干扰能力。试验结果验证了该组合导航方法是有效、可行的,适于在线实时应用,能融合其它导航传感器信息,具有较强可扩展性。  相似文献   

4.
从悬臂式掘进机位姿检测原理出发,介绍了分别基于扇面激光、室内GPS(iGPS)、全站仪、机器视觉、超宽带(UWB)和惯导的掘进机位姿检测方法。基于扇面激光的掘进机位姿检测方法具有计算简单、掘进机机身航向角及X轴(垂直两帮煤壁方向)坐标测量精度高的优点,但无法检测掘进机机身Y轴(掘进方向)、Z轴(垂直地面方向)坐标;基于iGPS的掘进机位姿检测方法能实现全参数位姿测量,检测精度高,但有效测量距离小;基于全站仪的掘进机位姿检测方法能实现全参数位姿测量,但标定、移站复杂;基于机器视觉的掘进机位姿检测方法具有掘进机截割头位置及掘进机机身姿态测量精度高、X轴和Z轴坐标测量精度高的优点,但无法检测掘进机机身Y轴坐标;基于UWB的掘进机位姿检测方法具有自主移站便利、Y轴坐标测量精度高的优点,但Z轴坐标误差较大;基于惯导的掘进机位姿检测方法具有姿态角测量精度较高、测量过程独立非接触的优点,但三轴坐标测量存在累计误差。为满足有效测量距离大于100m、三轴定位误差小于10cm、姿态角误差小于1°的实际应用要求,需要进一步研究机器视觉、UWB、惯导相结合的掘进机位姿组合检测方法,以实现掘进机全自主、全参数、非接触位姿检测。  相似文献   

5.
针对掘进机定位采用光电导航存在环境适应性差、惯性导航存在长时定位精度低等问题,在分析掘进机运动特点的基础上,提出了一种基于零速修正的掘进机惯性导航定位方法。在较短的掘进机停车时间间隔内,利用二次曲线拟合惯性导航系统的速度误差曲线,经过积分得到位置误差曲线,从而修正惯性导航系统的位置测量值。试验结果表明,基于零速修正的掘进机惯性导航定位精度可达厘米级,定位误差波动范围小,定位累计误差随时间增加没有明显增大趋势,满足掘进机定位要求。  相似文献   

6.
掘进机位姿准确快速测量是煤矿巷道智能掘进的前提和基础。目前悬臂式掘进机位姿测量存在非绝对位姿测量、测量精度低、布置复杂或仅能测量少数位姿参数等问题,无法满足智能掘进需要。针对上述问题,在基于激光靶向跟踪的悬臂式掘进机位姿测量方法的基础上,设计了一种基于激光靶向跟踪的悬臂式掘进机位姿测量系统。该系统由激光跟踪装置和激光标靶组成,激光跟踪装置安装在巷道后方,发射激光到安装在悬臂式掘进机机身上的激光标靶上并跟踪激光标靶移动,通过求解激光跟踪装置、激光标靶、掘进机和巷道等坐标系间的转换矩阵即可测得掘进方向位置、偏距、高度、偏向角、俯仰角和翻滚角6个绝对位姿参数,实现了悬臂式掘进机在巷道大地坐标系中绝对位姿的全参数实时测量。分析了该系统的误差影响因素,仿真得到了其误差分布规律:随着掘进距离增加,掘进机姿态测量误差在一定范围内变化,偏距和高度测量误差呈线性增加趋势;在5~80 m测量范围内,掘进机偏向角、俯仰角和翻滚角测量误差分别小于1.4,1,0.03°,掘进方向位置测量误差小于5 mm,偏距和高度测量误差均小于20 mm。利用履带式机器人底盘搭建了位姿测量实验系统,开展了其在模拟巷道中的位姿测...  相似文献   

7.
组合导航定位系统研究   总被引:3,自引:0,他引:3  
王晶晶  童敏明  刘彬 《软件》2011,32(5):82-84,96
掘进机是煤矿生产的主要机械装备之一,为使其高效、安全工作,满足人工化和智能化的发展趋势,设计了基于惯性导航系统和全站仪的悬臂式掘进机机身导航定位系统。本文将掘进机简化成两条履带,其它部件略去,建立掘进机机器人化数学模型。分别分析了基于全站仪和惯性导航系统的掘进机自动导航和定位技术的原理和特点,结合两者优点,将惯性导航系统和全站仪有机结合,介绍两系统相组合的巷道导航系统,并对组合系统在掘进机在使用中的导航和定位原理进行说明。  相似文献   

8.
多传感信息融合对于蟑螂的运动灵活性具有重要作用,为了模拟蟑螂腿毛的功能,提出采用多传感器信息融合技术开发了一种信息实时采集系统;该系统利用廉价鼠标作为传感器,在蟑螂机器人的腿上安装若干光电传感器来模拟蟑螂运动过程中腿毛的触觉,从而解决机器人位姿识别和避障的问题,为实现实时控制和智能控制提供保障;为了简化鼠标的安装,通过在蟑螂身体上安装鼠标传感器来检测位姿的方法,验证了算法的正确性,说明了模拟腿毛的功能;应用结果表明,该系统稳定性好,价格低廉,有一定的实用性与推广价值.  相似文献   

9.
针对井下车辆高精度惯性导航成本较高、低成本MEMS惯性传感器漂移较大等问题,提出一种井下多传感器组合导航系统,该系统通过蓝牙测距信息、MEMS惯性传感器及车载里程计信息进行组合导航。利用卡尔曼滤波技术融合多传感器数据,结合蓝牙测距信息抑制MEMS惯性传感器漂移,提高车载惯性传感器在一段时间内的定位精度;通过MEMS惯性传感器预测车辆位置,有效滤除干扰标签的蓝牙信号,提高数据可靠性;融合车辆里程计数据后,定位结果更加稳定可靠。测试结果表明,在井下蓝牙标签间隔10m布站情况下,每10m定位误差在3.2m以内,能够满足井下导航要求。  相似文献   

10.
基于多传感器信息融合城市车辆导航定位   总被引:3,自引:0,他引:3  
针对全球定位系统信号易受城市复杂的环境干扰,接收不可靠、航位推算只能进行短时间高精度导航、地图匹配仅可在拐弯处才能提供与地图精度相当的修正信息、城区车辆导航存在“盲区”问题,研制了采用蓝牙技术的新型路标传感器,研究了基于自适应联合卡尔曼滤波算法的多传感器信息融合技术。大量的试验研究表明:采用该信息融合技术后,城区车辆导航定位精度达到10m以内,符合高精度导航定位要求。  相似文献   

11.
12.
13.
机车空调逆变电源设计   总被引:1,自引:0,他引:1  
本文讨论的是机车空调逆变电源系统的设计与研究。该电源系统主要是由DC/DC的BOOST升压部分和DC/AC三相逆变部分两部分组成。DC/DC部分所得直流电压通过DC/AC部分逆变成三相交流电,供给空调机组工作。同时,为使电源系统能更可靠的运行,也设计了相应的故障检测、保护等辅助电路。  相似文献   

14.
针对国家烟草管理的现状,有关主管部门在全国推行“行业卷烟生产经营决策管理系统工程”,利用条码等自动识别技术手段实时掌握全国的生产经营信息。但某卷烟厂此前的物流环节已经是“件烟成垛”运输,如何在尽可能保持原有企业管理体系的前提下,达到有关部门的数据统计要求,解决成垛卷烟的物流和信息流的交互与统一问题成为技改的核心。该项目成功的将条码识别与射频识别有机结合起来,为烟草行业信息化提供了生动的应用案例。  相似文献   

15.
16.
17.
煤矿多功能物联网读写器的设计   总被引:1,自引:1,他引:0  
介绍了物联网的概念和结构组成,分析了物联网在煤矿中的具体应用,详细介绍了一种具有煤矿特色的多功能物联网读写器的设计与实现。该读写器应用在物联网的感知层,能够进行物体识别和各类物理信号与环境参数的传送,为煤矿应用物联网提供了一个很好的感知层解决方案。  相似文献   

18.
19.
机械臂绝对定位精度测量   总被引:2,自引:1,他引:1  
提出了用激光跟踪仪标定机械臂的D-H参数、测量机械臂绝对位姿以及对机械臂的绝对定位精度进行分析的方法;用激光跟踪仪测量机械臂各个关节单独运动时得到的一系列离散点,就可确定机械臂各个关节的轴线,由此建立机械臂的D-H坐标系,并对D-H参数进行标定;然后,给出了由6D激光头位姿确定机械臂末端位姿的方法;最后,推出了由测量位姿值与命令位姿值相比较,得到机械臂绝对定位的位置和姿态偏差的方法;这些方法可以有效、迅速地完成对机械臂绝对定位精度的测量.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号