共查询到20条相似文献,搜索用时 78 毫秒
1.
最近五年,卷积神经网络(CNN)得到了充分的发展,在图像分类领域,基于监督学习的算法在相关任务中取得了巨大的成功.但是与分类极为准确地粗粒度标签数据集相比,细粒度标签数据集的分类依旧是一个难点.地理图像被广泛应用于社会的各个方面,研究者往往需要对大规模的地理图像数据进行分类,但是由于地理图像的特征差异较小,因此自动化分... 相似文献
2.
为了解决水下相机设备捕获的鱼类图像质量差、数据量不均匀等难以准确识别鱼类的问题,提出一种基于特征融合的FL-BCNN鱼类识别算法。对B-CNN算法进行改进,融合不同卷积层的特征,提高细粒度特征的表达能力,解决了图像质量差引起的特征不明显的问题。利用焦点损失函数(Focal Loss)解决样本数据不平衡的问题,提高水下鱼类图像的识别能力。利用F4K(15)数据集与四个已有算法进行鱼类识别对比实验。实验结果表明,FL-BCNN鱼类识别算法的识别精度较高,具有较好的识别速度,可以有效解决鱼类识别中样本不平衡的问题。 相似文献
3.
4.
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性.随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究.首先,从细粒度... 相似文献
5.
近年来,卷积神经网络在图像处理方面的良好性能得到了广泛关注。为了更好地提取图像内容信息,提高图像分类精度,提出了一种基于深度多特征融合的CNNs图像分类算法。算法有效深度融合了图像的多种特征,即使用k-means++聚类算法提取的主颜色特征和利用去噪卷积神经网络提取的空间位置特征。实验结果表明,提出的基于深度多特征融合的CNNs图像分类算法在图像分类方面提供了有竞争力的结果,分类精度比CNN提升了7个百分点。该算法通过深度融合图像的多种特征,可为后续图像处理提供更全面更显著的有用信息。 相似文献
6.
针对深度卷积神经网络模型缺乏对语义信息的表征能力,而细粒度视觉识别中种类间视觉差异微小且多集中在关键的语义部位的问题,提出基于语义信息融合的深度卷积神经网络模型及细粒度车型识别模型.该模型由定位网络和识别网络组成,通过定位网络FasterRCNN获取车辆目标及各语义部件的具体位置;借助识别网络提取目标车辆及各语义部件的特征,再使用小核卷积实现特征拼接和融合;最后经过深层神经网络得到最终识别结果.实验结果表明,文中模型在斯坦福BMW-10数据集的识别准确率为78.74%,高于VGG网络13.39%;在斯坦福cars-197数据集的识别准确率为85.94%,其迁移学习模型在BMVC car-types数据集的识别准确率为98.27%,比该数据集目前最好的识别效果提高3.77%;该模型避免了细粒度车型识别对于车辆目标及语义部件位置的依赖,并具有较高的识别准确率及通用性. 相似文献
7.
基于深度卷积特征的细粒度图像分类研究综述 总被引:1,自引:0,他引:1
细粒度图像分类问题是计算机视觉领域一项极具挑战的研究课题,其目标是对子类进行识别,如区分不同种类的鸟.由于子类别间细微的类间差异和较大的类内差异,传统的分类算法不得不依赖于大量的人工标注信息.近年来,随着深度学习的发展,深度卷积神经网络为细粒度图像分类带来了新的机遇.大量基于深度卷积特征算法的提出,促进了该领域的快速发展.本文首先从该问题的定义以及研究意义出发,介绍了细粒度图像分类算法的发展现状.之后,从强监督与弱监督两个角度对比分析了不同算法之间的差异,并比较了这些算法在常用数据集上的性能表现.最后,我们对这些算法进行了总结,并讨论了该领域未来可能的研究方向及其面临的挑战. 相似文献
8.
基于卷积神经网络的垃圾图像分类算法 总被引:1,自引:0,他引:1
垃圾分类作为资源回收利用的重要环节之一,可以有效地提高资源回收利用效率,进一步减轻环境污染带来的危害.随着现代工业逐步智能化,传统的图像分类算法已经不能满足垃圾分拣设备的要求.本文提出一种基于卷积神经网络的垃圾图像分类模型(Garbage Classification Network, GCNet).通过构建注意力机制,模型完成局部和全局的特征提取,能够获取到更加完善、有效的特征信息;同时,通过特征融合机制,将不同层级、尺寸的特征进行融合,更加有效地利用特征,避免梯度消失现象.实验结果证明, GCNet在相关垃圾分类数据集上取得了优异的结果,能够有效地提高垃圾识别精度. 相似文献
10.
机场中飞翔的鸟类对于飞机安全飞行的危害极大,为避免飞鸟撞击飞机事故的发生,机场需识别出飞鸟的种类并自动做出对应的驱鸟措施,如声波驱鸟、光驱鸟等等,相比于直接采用混合驱鸟方式,上述方法节省了大量人力和物力。但机场飞鸟种类识别是一个十分棘手的问题。首先,作为细粒度分类问题,飞鸟类间相似度较高且类内对图像的变化十分敏感;其次,每种飞鸟图像较少,易造成过拟合问题;最后,机场采集的飞鸟图像呈现出剪影化、重影化、遮挡的形态,相比于正常拍摄的图像,丢失了许多特征细节。为了解决上述问题,根据实际情况提出了涵盖危险鸟类的数据集,并提出了以二值化算法为核心的预处理方法,同时在细粒度图像分类算法层面,提供了两种思路:第一,为解决类间相似度高的问题,本文使用堆叠的Swin Transformer作为骨干网络提取细腻的特征表示,并结合中心损失函数与有监督的Softmax损失函数,得到了比常规架构和损失更佳的结果;第二,考虑到图像质量低、样本少的问题,使用集成学习的方法,用不同的网络架构提取特征表示,达到充分利用图像信息的目的。上述两种方法的实验结果表明,前者在Nabirds数据集上识别率达到90%以上,而在整合的数据集上识别率达到64%;集成学习则有效地提取了低质量图像的特征,达到了理想的效果。 相似文献
11.
人脸妆容迁移是指将参考妆容迁移到素颜人脸上,在保持面部特征不变的同时尽可能展现参考妆容的风格的一种任务。为了进一步实现人脸妆容自动迁移技术,避免现有妆容迁移方法没有充分考虑人与人之间的五官差异而导致提取的人脸信息不足等问题,提出了一种基于深度卷积神经网络的人脸妆容迁移算法。该算法首先自动定位素颜人脸和参考妆容的五官,提取重要部位的特征信息。然后通过妆容传递网络和损失函数,经过深度卷积神经网络自主训练,最终实现了参考妆容向素颜人脸的自动迁移。仿真实验结果表明,与目前的主流算法进行对比,该算法耗时更短、运算性能更具优势,同时在不改变原图五官细节的基础上,妆容迁移效果更为自然。 相似文献
12.
织物缺陷在线检测是纺织行业面临的重大难题,针对当前织物缺陷检测中存在的误检率高、漏检率高、实时性不强等问题,提出了一种基于深度学习的织物缺陷在线检测算法。首先基于GoogLeNet网络架构,并参考其他分类模型的经典算法,搭建出适用于实际生产环境的织物缺陷分类模型;其次利用质检人员标注的不同种类织物图片组建织物缺陷数据库,并用该数据库对织物缺陷分类模型进行训练;最后对高清相机在织物验布机上采集的图片进行分割,并将分割后的小图以批量的方式传入训练好的分类模型,实现对每张小图的分类,以此来检测缺陷并确定其位置。对该模型在织物缺陷数据库上进行了验证。实验结果表明:织物缺陷分类模型平均每张小图的测试时间为0.37 ms,平均测试时间比GoogLeNet减少了67%,比ResNet-50减少了93%;同时模型在测试集上的正确率达到99.99%。说明其准确率与实时性均满足实际工业需求。 相似文献
13.
针对抠图任务中人物抠图完整度低、边缘不够精细化等繁琐问题,提出了一种基于深度学习
的人物肖像全自动抠图算法。算法采用三分支网络进行学习,语义分割分支(SSB)学习 图的语义信息,细节
分支(DB)学习 图的细节信息,混合分支(COM)将 2 个分支的学习结果汇总。首先算法的编码网络采用轻量
级卷积神经网络(CNN) MobileNetV2,以加速算法的特征提取过程;其次在 SSB 中加入注意力机制对图像特
征通道重要性进行加权,在 DB 加入空洞空间金字塔池化(ASPP)模块,对图像的不同感受野所提取的特征进
行多尺度融合;然后解码网络的 2 个分支通过跳级连接融合不同阶段编码网络提取到的特征进行解码;最后
将 2 个分支学习的特征融合在一起得到图像的 图。实验结果表明,该算法在公开的数据集上抠图效果优于
所对比的基于深度学习的半自动和全自动抠图算法,在实时流视频抠图的效果优于 Modnet。 相似文献
14.
15.
传统多生物特征融合识别方法中人工设计特征提取存在盲目性和差异性,特征融合存在空间不匹配或维度过高等问题,为此提出一种基于深度学习的多生物特征融合识别方法。通过卷积神经网络(convolutional neural networks,CNN)提取人脸和虹膜特征、参数化t-SNE算法特征降维和支持向量机(support vector machine,SVM)分类组合进行融合识别。实验结果表明,该融合识别方法与单一生物特征识别以及其它融合识别方法相比,鲁棒性增强,识别性能提升明显。 相似文献
16.
本文针对现有滚动轴承智能故障诊断方法在面向大噪声背景下鲁棒性能差的问题.基于混沌理论,提出采用相空间重构方法还原并丰富轴承振动的动力学特性,通过卷积神经网络(CNN)提取混沌序列中的高级抽象特征,又考虑故障信号具有长程相关性,将低维抽象故障特征引入长短期记忆网络(LSTM),以灰狼算法优化的支持向量机(OSVM)作为分类器,提出CCNN (Chaotic CNN)–LSTM–OSVM智能故障诊断方法.试验结果表明,在处理信噪比为-6 dB信号时,该方法仍具有89.96%的准确率,相比以Softmax作为分类器的CNN–LSTM和CCNN–LSTM方法分别高出15.36%和5.21%,且在收敛速度方面亦有较大优势. 相似文献
17.
针对中华传统刺绣工艺传承保护问题中的分类任务,传统的刺绣分类方法存在耗时长、精度低以及需要大量掌握专业知识的人力资源等问题;设计了一种基于改进DenseNet的刺绣图像分类识别方法;构建刺绣图像分类识别数据集;采用局部二值模式LBP、Canny算子边缘提取以及Gabor滤波等方式提取纹理特征,将不同特征图与原图合并为四至六通道图像数据集送入网络进行消融试验,扩充了数据集宽度;为稳定训练过程,加速损失收敛速度,提出引入SPP (spatial pyramid pooling)结构优化模型;为提高分类识别精度使用Leaky ReLU激活函数优化ReLU函数;实验结果表明基于改进DenseNet的刺绣图像分类识别方法可解决传统刺绣图像分类方法中存在的问题,改进后的刺绣图像分类模型与基准模型相比准确率提高了8.1%,高达97.39%。 相似文献
18.
针对三维掌纹特征表示的鲁棒性和准确性问题,提出一种融合曲面的几何特征和
方向特征的三维掌纹识别方法。基于现有的曲面类型编码提取掌纹几何特征的基础上,提出使
用基于形状指数的编码来共同表达三维掌纹的几何特征,从而有效减少由阈值所引起的错误编
码带来的准确性上的影响。此外,提出一种多尺度的改进竞争编码来表达掌纹的方向特征。在
决策层,使用基于多字典的协同表示框架融合上述几何特征和方向特征以完成掌纹识别。在公
开的三维掌纹数据集上的大量实验表明,所提方法可以在保持较低计算复杂度的同时实现最佳
的识别精度。 相似文献
19.
微表情的变化是非常微小的,这使得微表情的研究非常困难。微表情是不能伪造和压制的,因此也成为判断人们主观情感的重要依据。本文提出了以卷积神经网络及改进长短时记忆网络特征融合为依托的微表情识别方法,先介绍了相关的背景知识,再介绍了实验的预处理过程、特征提取以及相应的特征融合的过程,将所得的结果用于实验模型的预测分类。实验结果表明,新模型具有更好的识别率。 相似文献
20.
针对卷积神经网络提取特征信息不完整导致图像分类方法分类精度不高等问题,利用深度学习的方法搭建卷积神经网络模型框架,提出一种基于迭代训练和集成学习的图像分类方法。利用数据增强对图像数据集进行预处理操作,在提取图像特征时,采用一种迭代训练卷积神经网络的方式,得到充分有效的图像特征,在训练分类器时,采用机器学习中集成学习的思想。分别在特征提取后训练分类器,根据各分类器贡献的大小,赋予它们不同的权重值,取得比单个分类器更好的性能,提高图像分类的精度。该方法在Stanford Dogs、UEC FOOD-100和CIFAR-100数据集上的实验结果表明了其较好的分类性能。 相似文献