首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对现有气体分离炭膜存在的渗透速率低等问题, 提出并设计在PMDA-ODA型聚酰亚胺前驱体中掺杂碳纳米管, 经高温热解后制备炭/碳纳米管杂化膜. 分别采用透射电镜(TEM)、X射线衍射分析(XRD)和气体渗透实验对炭/碳纳米管杂化膜的微观结构和分离性能进行表征. 实验结果表明, 在PMDA-ODA型聚酰亚胺前驱体中掺杂碳纳米管后, 碳纳米管与炭基体之间形成明显的“界面间隙”, 打破了原有炭膜中由乱层炭构成的无序微孔结构, 重新构建了杂化炭膜的孔隙结构. 与纯炭膜相比, 杂化炭膜的气体渗透速率大幅增加, 其中O2的渗透速率增大接近4倍(达到1576 Barrer), 而O2/N2的分离选择性仅降低17%.  相似文献   

2.
以BPDA-ODA型聚酰亚胺为前躯体,沸石为掺杂剂,通过成膜和炭化等过程制备了杂化炭膜.分别采用热失重、X射线衍射、扫描电子显微镜及渗透技术研究了前躯体热稳定性,炭膜微观结构、形貌及气体分离性能.考察了ZSM-5与5A两种沸石含量、炭化温度、渗透温度及渗透压力等因素对炭膜气体分离性能的影响.结果表明:H2、CO2、O2和N2 4种气体主要以分子筛分机理渗透通过炭膜,实现选择性分离.在650℃炭化温度下得到杂化炭膜随沸石含量提高,气体渗透性与选择性均略降低;5A杂化炭膜的渗透性与选择性都显著高于ZSM—5杂化炭膜;随渗透压力提高,杂化炭膜的气体渗透性与选择性升高.当炭化温度从650℃升高到750℃时,杂化炭膜的渗透性降低.  相似文献   

3.
通过在炭膜前驱体中添加纳米二氧化钛-P25粒子制备了P25杂化炭膜,并采用TG、SEM、TEM、XRD、气体渗透性能测试等表征方法探讨添加P25纳米粒子对杂化炭膜的热解过程、微观结构及气体渗透性能的影响。结果表明,P25纳米粒子的加入提高了聚合物膜的热稳定性;P25粒子因团聚形成一定的堆积间隙并与炭基体形成了界面孔隙。气体渗透性能测试表明,P25的引入显著地提高了气体渗透通量,并随添加量增加提高而更加明显,气体选择性略有降低,分离机理仍以分子筛分为主;炭化终温的提高可以显著增加气体选择性,但气体渗透性有所降低。当P25添加量为20wt%,炭化终温为700℃时,所制备的杂化炭膜其H2、CO2、O2、N2、CH4气体渗透性分别为1769.2、1558.6、410.2、55.5和26.8 Barrer。  相似文献   

4.
以聚酰亚胺为前驱体,NaY型沸石为掺杂剂,经成膜和炭化制备了杂化炭膜.采用扫描电镜、X射线衍射、热重分析、红外光谱分析对膜样品的结构与性质进行了表征.考察了掺杂剂量、渗透温度与渗透压力对炭膜的结构及气体分离性能的影响.结果表明,与纯炭膜相比,杂化炭膜在保持高O_2/N_2选择性的前提下,渗透性显著提高;随着膜内沸石含量的提高,杂化炭膜的渗透性明显提高.由沸石质量分数为0.5%前驱体经650℃炭化所制备的杂化炭膜,对O_2的渗透性达79.5 Barrer, O_2/N_2选择性达7.5.  相似文献   

5.
制备了聚乙烯醇(PVA)、PVA/聚乙烯吡咯烷酮(PVP)与戊二醛交联的PVA/PVP膜用于渗透蒸发对乙酸乙酯/乙醇/水三元共沸体系脱水。采用傅立叶变换红外光谱(FT-IR),X射线散射(XRD)和扫描电镜(SEM)等对膜的物理化学结构及形貌进行了表征。考察了PVP含量、交联度对共混膜结构和亲水性的影响。考察了PVP含量、交联度和温度对PVA均质膜的分离性能和溶胀行为的影响。结果表明,交联的PVA/PVP共混膜对乙酸乙酯/乙醇/水有着优异的分离性能。  相似文献   

6.
通过原位聚合法分别将无序介孔碳(DOMC)、有序介孔碳(OMC)掺杂到聚酰亚胺(PI)中制备DOMC/PI、OMC/PI杂化膜。利用FTIR、TEM、SEM和XRD等分析表征两种介孔碳材料的结构及其掺杂对杂化膜形貌和结构的影响,结合CO2和N2的渗透实验考评杂化膜的气体渗透性能。DOMC、OMC均具有孔隙结构,且与CO2分子之间存在相互作用,通过掺杂DOMC、OMC既能提高杂化膜的自由体积,又可促进杂化膜对CO2的优先选择吸附。表现为掺杂DOMC、OMC可有效改善PI膜的CO2、N2渗透性能和CO2/N2渗透选择性。随掺杂量的增加,杂化膜的CO2、N2渗透性能和CO2/N2渗透选择性均先增大后减小。另外,相较于OMC,DOMC具有更多孔隙结构和更大的比表面积,使DOMC/PI杂化膜的CO2、N2渗透性能优于OMC/PI杂化膜,但两种杂化膜的CO2/N2渗透选择性相近。  相似文献   

7.
碳纳米管和酸化石墨烯可以通过聚丙烯酰氯的桥梁作用紧密地连接在一起,形成稳定的碳纳米管/石墨烯杂化材料。将合成杂化材料所需的碳纳米管和石墨烯的比例分别调整为1∶2和2∶1与聚丙烯酰氯进行反应。用红外光谱(FT-IR)、透射电镜(TEM)和拉曼光谱(Raman)对反应产物碳纳米管/石墨烯杂化材料进行表征。将合成的不同种类杂化材料添加到环氧树脂中制备复合材料,研究不同种类的杂化材料对环氧树脂的增强增韧效果。拉伸测试结果表明,碳纳米管和石墨烯的比例为1∶2时,合成的碳纳米管/石墨烯杂化材料对环氧树脂基的增强增韧效果最佳。这是由于当碳纳米管与石墨烯的比例为1∶2时,碳纳米管可以更均匀地分散在石墨烯的片层中,形成稳定的三维结构,当复合材料承受外力时不会产生局部应变,从而达到增强增韧效果。  相似文献   

8.
目的通过调节包装内的湿度,以达到果蔬生长的适宜湿度环境,从而延缓新鲜果蔬的霉变及腐烂速率,延长其保质期,并降低产品损失率。方法将高吸水性树脂PVA与纳米分子筛均匀混合,配制成具有保湿功能的涂布溶胶,采用涂布法将该溶胶与包装基体材料PE相复合,得到一种具有防霉保鲜功能的新型食品包装薄膜。利用电子万能试验机、透氧测试仪、透湿测试仪等仪器测定该复合薄膜的力学性能、阻隔性和透湿性。结果 PVA纳米分子筛/PE复合薄膜在纳米粉体质量分数为1.0%左右时对薄膜物理性能的影响较低,且具有较高的保湿性能,其透气性系数相比未做涂布处理的基材PE大幅降低,透湿量下降20%。结论该复合薄膜在新鲜果蔬的运输、贮存等方面具有潜在的应用价值。  相似文献   

9.
多壁碳纳米管(MWNT)经硫酸/硝酸混酸处理后,获得的羧基化多壁碳纳米管通过溶液共混制备羧基化多壁碳纳米管/壳聚糖( MWNT- COOH/CS)杂化膜,用于乙醇/水体系的渗透汽化脱水.用FTIR、TEM等表征混酸处理前后的多壁碳纳米管及杂化膜的结构,实验测定杂化膜在乙醇/水溶液中的溶胀吸附行为及其对乙醇/水体系的渗透...  相似文献   

10.
为缓解工业废水中金属离子和染料造成的环境压力,增加碱木质素的利用率,将碱木质素进行胺化改性后引入到聚乙烯醇缩甲醛中制备聚乙烯醇/胺化碱木质素发泡材料(PAFM),并对其吸附性能和絮凝性能进行测定,采用傅里叶变换红外光谱、扫描电镜和热重分析对其表征。结果表明,聚乙烯醇(PVA)5 g,甲醛4 m L,硫酸4 m L,胺化碱木质素15%,交联温度120℃,PAFM对Cu2+的吸附性能好。傅里叶变换红外光谱显示,碱木质素得到胺化改性,并成功与PVA反应生成PAFM;PAFM的含氮量为1.20%,较聚乙烯醇/碱木质素发泡材料(PLFM)增加了1.02%;SEM显示发泡材料具有很好的孔隙结构;热重分析显示,PAFM具有更好的耐热性。对Cu2+的吸附性能在12 h时达到饱和,其吸附等温线满足V型吸附等温线模型;PAFM添加量为3 g/L时,酸性条件下的絮凝性能更好,对溶液的脱色率达到73.52%。  相似文献   

11.
采用溶液蒸发法制备了硫酸锆/聚乙烯醇[Zr(SO_4)_2/PVA]杂化催化膜,并将此催化膜用于催化酯化酸化油制备生物柴油.通过考察醇/油摩尔比、催化膜用量、反应时间、PVA与Zr(SO_4)_2质量比对酯化反应的影响.得到Zr(SO_4)_2/PVA催化膜制备生物柴油的最佳工艺条件,即保持反应温度65℃、反应时间120 min、催化膜用量为4%(质量分数)、PVA与Zr(SO_4)_2质量比1∶1,转化率可以达到94.5%.对比了交联与未交联Zr(SO_4)_2/PVA催化膜的重复使用性能,重复使用5次交联与未交联Zr(SO_4)_2/PVA催化膜转化率分别为64.3%和78.2%.  相似文献   

12.
将胺化木质素磺酸钠(AL)通过阴离子交换法插层锌铝水滑石(LDH),得到填料AL-LDH,以聚醚嵌段酰胺共聚物(Pebax1657)为分离膜基材,制备具有一定成本优势的高CO2/N2选择性混合基质膜。通过傅里叶红外变换光谱仪、X射线衍射仪进行定性和结构表征。采用SEM观察AL-LDH和LDH的微观结构。力学性能测试结果表明,3%AL-LDH/Pebax的断裂伸长率和拉伸强度分别达到464.7%和18.7MPa,比纯Pebax膜分别提升了66.4%和12.6%。AL-LDH/Pebax的CO2渗透率最高可达113.60Barrer,比纯膜提高了131%,比LDH/Pebax系列提升了15%,证明AL-LDH能进一步提升混合基质膜的CO2/N2分离和选择性。  相似文献   

13.
本文通过一种简易的化学方法成功制备了富勒烯/碳纳米管杂化材料。首先采用强酸氧化处理多壁碳纳米管使其表面产生羟基和羧基等官能基团,再将氧化处理后的碳纳米管与六亚甲基二异氰酸酯反应,通过羟基和羧基基团与异氰酸根的反应对多壁碳纳米管进行修饰,最后利用富勒醇表面的羟基与碳纳米管表面异氰酸之间的反应制备出富勒烯/碳纳米管杂化材料。产品采用傅立叶变换红外光谱(FTIR)、透射电镜(TEM)和热重分析(TGA)等手段进行了分析和表征。结果表明,成功实现了富勒烯与碳纳米管的化学组装。  相似文献   

14.
二氧化硅基有机-无机防腐蚀杂化膜的制备及性能   总被引:3,自引:0,他引:3  
传统的钢铁表面覆膜技术如磷化、铬酸盐钝化等污染严重,硅烷化和有机-无机杂化涂层用于金属预处理则具有耐温、耐腐蚀等优点,又利于环保.以正硅酸乙酯、γ-氨丙基三乙氧基硅烷为原料,采用溶胶.凝胶法制备了SiO2基有机-无机杂化材料.通过红外光谱对不同温度处理的杂化材料进行了分析,以差示扫描量热法研究了杂化材料在不同温度下的吸放热反应,结合对杂化溶胶涂覆于钢铁基体表面形成涂层的塔菲尔曲线分析,对杂化膜的保护性能进行了研究.结果表明:涂层试样在N2气氛下300℃热处理,可以保证涂层中Si-O-Si键等最大程度地键合,并有效保留了有机组分,从而有利于保证杂化材料涂层的完整性,较大地提高了基体钢铁的耐腐蚀性能,可作为金属表面涂装处理工序中良好的中间过渡层.  相似文献   

15.
以海藻酸钠(SA)和磷钨酸(PTA)为原料,通过溶液浇铸法制备了不同配比的海藻酸钠/磷钨酸(SA/PTA)杂化膜。用傅立叶红外分析(FT-IR)、扫描电子显微镜(SEM)、热失重(TGA)等手段对杂化膜进行了表征与分析,并考察了SA/PTA杂化膜的力学性能。结果表明:SA与PTA有着较好的相容性,能够制备出致密无缺陷的杂化膜,但当PTA含量超过8wt%时,膜在微观上出现相分离;PTA的加入,极大地提高了杂化膜的耐热性和机械强度。膜的拉伸强度从纯SA膜的19.72MPa增加到了65.17MPa,断裂伸长率略微下降。  相似文献   

16.
朱娜娜  李越  高会元 《功能材料》2016,(4):4099-4104
以BTDA-ODA型聚酰亚胺为基质膜材料,2-甲基咪唑锌(ZIF-8)为掺杂剂,制备了聚酰亚胺基杂化膜(PI/ZIF-8)。运用FT-IR、XRD、SEM和EDS等表征方法,对ZIF-8含量不同的杂化膜的化学结构和微观结构进行了分析,并对杂化膜进行了CO_2和N_2单一气体渗透测试。结果表明,ZIF-8与PI两相完全相容且杂化膜对CO_2表现出很高的渗透选择性。当ZIF-8质量分数为7%(PI/7Z)时,CO_2的渗透系数为2.79×10~(-9) mol·m~(-2)s~(-1)Pa~(-1),相应的CO_2/N_2理想选择性系数达到最大值13.6,远大于努森扩散的分离系数0.79。  相似文献   

17.
聚乙烯醇/海藻酸钠/碳纳米管复合膜的制备及其吸附性能   总被引:1,自引:0,他引:1  
通过溶液共混法制备了聚乙烯醇/海藻酸钠/多壁碳纳米管复合膜,对其进行了透光率、力学性能和DSC表征,并研究了对Cr2O27-的吸附性能。结果表明,PVA与SA等质量混合时相容性好;MWNTs的添加有助于提高复合膜力学性能、热性能;在pH值为2、温度为30℃、MWNTs为80mg时,吸附6h后,复合膜对Cr2O27-的去除率达到96.84%。  相似文献   

18.
渗透汽化是实现芳烃/烷烃混合物高效分离最有潜力的技术之一.以钴铝层状双金属氢氧化物(CoAl-LDH)为掺杂材料,采用浸渍法在管式陶瓷基底上制备了CoAl-LDH/聚合物(Boltorn W3000)杂化膜.通过扫描电镜、原子力显微镜、红外光谱、X射线衍射仪和纳米压痕仪等对杂化膜进行了表征.结果表明,CoAl-LDH在分离层中均匀分布,杂化膜表面的力学强度增加,膜表面粗糙度随着负载量的增加而增加.将杂化膜用于芳烃/烷烃混合体系的分离,对于质量分数50%的甲苯/正庚烷混合体系,进料液温度为40℃时,杂化膜的通量及分离因子分别为287 g/(m~2·h)及4.23.  相似文献   

19.
用静电纺丝法制备一系列不同二氧化锆含量的ZrO2/PVA杂化电纺纤维,研究了纤维的稳定性和疏水性.结果表明,ZrO2水合物与PVA通过分子间羟基键合形成ZrO2/PVA杂化;经ZrO2杂化的PVA热分解温度由200℃升高至250℃左右;电纺纤维的平均直径为100-400 nm,随着ZrO2含量的增大,纤维的直径先增大后减小并且珠结增多,无定型程度逐渐提高;与纯PVA纤维相比,ZrO2/PVA杂化纤维在酸性、中性和碱性条件下的疏水性和稳定性均明显增强.  相似文献   

20.
采用溶胶/凝胶方法制备了一系列含有铽-水杨酸配合物的聚乙烯醇高分子杂化光功能材料,考察了偶联剂的引入对杂化材料的形貌和光学性能的影响。利用红外光谱表征材料的结构,扫描电镜和荧光光谱表征材料的性能。结果表明,随着偶联剂的引入,可以有效避免相分离现象和荧光淬灭,显著提高了杂化材料的光学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号