首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
以FeC2O4·2H2O和LiH2PO4为原料,经过两步机械活化后在惰性气氛中经高温烧结,合成出LiFePO4正极材料.研究了合成温度与反应时间对材料性能的影响.采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌,结果表明,600℃下烧结18h合成的样品具有规则的橄榄石型结构.样品的电化学性能良好,在室温下以0.1C倍率充放电,首次放电比容量可达到155.6mAh/g,为其理论容量的91.53%,且循环50次后比容量仅衰减4.11%,采用1C倍率放电时,首次放电比容量达到149.3mAh/g.  相似文献   

2.
张亚利  高立军吁霁 《材料导报》2007,21(F11):303-305,312
LiFePO4因具有高的比容量、良好的循环性、环境友好等特点,成为目前最受关注的锂离子电池正极材料。概述了LiFePO4的结构和电化学性能,介绍了LiFePO4主要的几种制备方法,包括固相法、水热法、微波法。同时阐述了提高LiFePO4电化学性能所做的改性研究,并对该材料的发展方向进行了展望。  相似文献   

3.
以LiOH·H2O、FeC2O4·2H2O、NH4H2PO4和C6H12 O6·H2O为原料,采用一步固相法在氮气氛下合成了LiFePO4/C复合正极材料.采用XRD、SEM和电池性能测试仪对合成产物进行了表征.研究了煅烧温度、煅烧时间、葡萄糖用量和锂过量对合成产物结构和电化学性能的影响.实验结果表明,采用一步固相法合成LiFePO4/C的最佳务件为:将经过高能球磨的前驱体在氮气氛下于650℃煅烧18h,葡萄糖用量为其它原料总质量的10%,锂过量10%(摩尔分数).在此条件下合成的LiFeP(4/C具有单一的橄榄石型结构和良好的电化学性能,0.1C的首次放电容量达到154.87mAh/g,30次循环后放电容量仍保持138.97mAh/g.  相似文献   

4.
两步掺杂合成法制备LiFePO4-C复合材料及其性能   总被引:1,自引:0,他引:1  
通过两步掺杂碳采用高温固相反应法合成了锂离子电池正极LiFePO4-C复合材料.利用SEM、XRD、TG/DTA等方法对该正极材料的晶体结构、表面形貌、粒径大小和热反应进行了分析研究.实验结果表明,LiFePO4-C具有单一的橄榄石结构,前驱体掺杂14%(质量分数)、预分解后掺杂6%(质量分数)葡萄糖合成的材料具有良好的充放电性能和循环稳定性能.在0.1C倍率下进行充放电测试,首次放电比容量可达158.5mA·h/g,具有良好的电化学性能.  相似文献   

5.
高密度LiFePO4/C正极材料的合成其及电化学性能研究   总被引:2,自引:0,他引:2  
以Li2CO3为锂源,葡萄糖为C源,与高密度前驱体FePO4混合,采用高温固相反应法合成高密度的锂离子电池正极材料LiFePO4/C复合材料.采用X射线衍射、电子扫描显微镜和恒电流充放电对制得的LiFPO4进行了研究.结果表明,合成材料结晶完整,为均一的橄榄石型结构.C的含量在很大程度上影响LiFePO4的密度,当C的含量为3.0%(质量分数)时,所制正极材料LiFePO4/C的振实密度可达到2.14g/cm3,0.1C放电容量为121.5mAh/g,体积比容量达到260.OmAh/V.  相似文献   

6.
改进固相法制备LiFePO4/C正极材料及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法制备了掺碳的磷酸铁锂正极材料,并用XRD,SEM,元素分析,红外光谱及激光粒度分布仪等对样品进行了测试分析.结果表明,样品具有单一的橄榄石结构和较好的放电平台(约3.4V),粒度较小粒径分布均匀,0.1C首次放电比容量为137.8mAh/g,循环20次后容量保持率为92.6%,以1C倍率首次放电比容量为129.6mAh/g,循环20次后容量下降10.8%.  相似文献   

7.
采用机械球磨结合微波辐射工艺合成C包覆锂离子电池正极材料LiFePO4/C.通过X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试研究了不同C源和掺C量对样品物相结构、形貌和电化学性能的影响.实验结果表明,微波法可以快速合成LiFePO4/C正极材料;以乙炔黑作为C源,掺杂8%(质量分数)所合成的样品具有最好的电化学性能,在室温下以20mA/g进行充放电测试,其首次放电容量为148.44mAh/g,10次循环后仍有144.74mAh/g,容量保持率为97.51%.  相似文献   

8.
LiFePO4/C正极材料的液相合成及电化学性能研究   总被引:3,自引:0,他引:3  
采用磷酸三丁酯(TBP)为多功能反应物并添加表面活性剂PEG-4000合成了LiFePO4/C正极材料,利用XRD、SEM、XPS和滴定分析对产品进行了结构、表面形貌和化学组成表征.结果表明在650℃烧结15h所得产物结晶良好,为均匀分布在100nm左右的类球形颗粒.循环伏安曲线显示,该样品具有对称且尖锐的氧化还原电位峰,表明材料具有良好的电化学可逆性.在0.1mA/cm2电流密度下,其首次充放电比容量分别为162和158mAh/g,经100次循环后放电容量损失率仅为3.3%,当充放电密度增加到4mA/cm2时,材料的放电比容量仍然接近100mAh/g,倍率性能优良.  相似文献   

9.
以高密度FePO4作为前躯体,Cu(Ac)2为掺杂源,通过高温固相法合成了高振实密度的锂离子电池正极材料LiFe1-xCuxPO4/C(x=0、0.01、0.015、0.02、0.025).采用X粉末衍射(XRD)、电子扫描显微镜(SEM)、循环伏安法(C-V)和恒电流充放电对合成的材料掺杂进行了结构、形貌和电性能表征和分析研究.结果表明, 所合成的掺杂复合材料LiFe1-xCuxPO4/C为典型的橄榄石型结构,结晶度高,具有较高的振实密度.掺杂Cu2+离子在很大程度上可以提高LiFePO4的电化学性能,当Cu含量为2.0%(质量分数)时,LiFe0.98Cu0.02PO4/C的振实密度可以达到1.98g/cm3,比容量为最大值,0.1C倍率放电可达150.0mAh/g,体积比容量为297.0mAh/cm3;2C倍率放电比容量仍可以达到127.3mAh/g以上,体积比容量为252.1mAh/cm3.  相似文献   

10.
利用高温固相反应法在惰性气氛下合成了掺Mn的LiFePO4正极材料.考察了Mn2 的掺杂浓度对于目标化合物结构及其电化学性能的影响.应用XRD、循环伏安和恒流充放电等方法对产物进行了结构表征和性能测试.结果表明,产物具有单一的橄榄石型结构,Mn2 掺杂并未影响目标产物的结构,而是与LiFePO4形成了LiFe1-yMnyPO4(y为Mn的掺杂浓度)固溶体.目标产物具有优良的电化学性能.充放电测试表明,在0.1C倍率下放电,LiFe0.5Mn0.5PO4材料的首次放电比容量达129.1mAh/g,在4.1及3.5V处各存在一个放电平台.充放电循环20次循环后,容量仍保持在120.9mAh/g.利用循环伏安测试分析了Mn的改性效果及锂离子在目标化合物中脱嵌的过程.  相似文献   

11.
本文在溶胶凝胶法制备碳包覆LiFePO4/C锂离子电池正极材料的基础上,对溶胶进行机械球磨活化以进一步优化LiFePO4/C复合材料的结构和形貌,并通过原位引入Fe2P等方法,提高其高倍率性能。采用XRD、SEM、元素分析等材料结构测试分析方法和恒电流充放电及电化学阻抗谱电化学测试技术,对溶胶机械活化及不同溶胶溶剂对LiFePO4/C材料结构和电化学性能的影响进行了研究。研究结果表明,机械活化能有效减小LiFePO4/C颗粒的尺寸及改善其分散性,并能改变Fe2P相的含量。溶胶机械活化处理后的LiFePO4/C在不同倍率下的放电容量明显增加。相对于蒸馏水,乙醇作为溶胶溶剂获得的LiFePO4/C材料具有更好的倍率性能,其在1C和10C的容量分别达到136mAh/g和90mAh/g。  相似文献   

12.
以水溶性酚醛树脂为碳源, Li2CO3为锂源, 纳米FePO4前躯体为铁源和磷源, 以水为介质, 采用湿法研磨混合均匀, 然后通过高温固相法制备出纳米磷酸亚铁锂/碳(LiFePO4/C)复合材料。采用XRD、SEM、TEM、TG和拉曼光谱对该复合材料进行了表征, 并研究了其电化学性能。结果表明, 制备的LiFePO4/C纳米颗粒为类球形, 表面均匀地包覆了一层约5 nm厚的碳层, 作为锂离子电池正极材料表现出良好的倍率性能和循环性能, 在0.2 C(1 C=170 mAh·g-1)、0.5 C、1 C、2 C、5 C、10 C下首次放电容量分别为151、150、146、142、132、119 mAh·g-1, 20 C下的首次放电容量也达105 mAh·g-1, 且循环50次几乎无衰减。  相似文献   

13.
以Na2SiO3.9H2O和FeCl2.4H2O为原料,采用低热固相反应获得了分散均匀的β-FeOOH/SiO2前驱体;再以Li2CO3为锂源、聚乙烯醇和超导电炭黑为复合碳源,通过微波辅助固相法合成了Li2FeSiO4/C材料.通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和恒电流充放电测试等方法对材料的结构、微观形貌及电化学性能进行表征.650℃下微波处理12 min可获得结晶好、晶粒细小均匀的Li2FeSiO4/C材料;在选用的微波合成体系下,超导碳和聚乙烯醇热分解的无定形碳不仅利于合成反应的顺利进行,而且提高了Li2FeSiO4的整体导电性能.制备的复合正极材料在60℃下0.05C倍率首次放电容量为129.6 mAh/g,0.5C倍率下为107.5 mAh/g,0.5C下15次循环后保持为104.8 mAh/g,具有较好的放电比容量和良好的循环稳定性能.结果表明,微波辅助固相合成工艺是制备Li2FeSiO4/C复合材料的一种很有前景的方法.  相似文献   

14.
采用化学氧化法, 以吡咯为单体、 三氯化铁为氧化剂、 苯磺酸钠为掺杂剂在磷酸铁锂颗粒表面进行原位聚合, 制备了聚吡咯/磷酸铁锂(PPy/LiFePO4)复合材料。用FTIR、 XRD和SEM对PPy/LiFePO4复合材料进行了结构与形貌表征。用电化学工作站和充放电测试系统对复合材料的电化学性能进行了表征。结果表明: PPy/LiFePO4复合材料作锂二次电池正极具有良好的充放电循环性能。当PPy质量分数为17%, 充放电电流为0.1 mA时, PPy/LiFePO4复合材料最高放电比容量达163 mAh·g-1, 50次循环之后放电比容量仍为初始时的94.9%; 与LiFePO4相比, 当PPy的含量适当时, PPy/LiFePO4复合正极材料的放电比容量会有明显提高。PPy的加入提高了LiFePO4的电子电导率, 从而提高了活性物质有效利用率, 因此PPy/LiFePO4复合材料的比容量和循环性能均得到了提升。  相似文献   

15.
制备热解炭/磷酸亚铁锂和纳米炭纤维/磷酸亚铁锂核壳结构材料, 研究了电化学性能. 结果表明, 热解炭和纳米炭纤维包覆层能有效地降低磷酸亚铁锂材料的电阻率, 大大提高材料的充放电容量和循环稳定性. 与热解炭相比, 纳米炭纤维具有一维结构和优异的力学性能, 更适于作为磷酸亚铁锂电极材料的高效导电剂.  相似文献   

16.
对LiFePO4/C复合前驱体,分别采用静态氮气气氛,动态氮气气氛及静态真空三种烧结方式进行碳热还原合成LiFePO4/C复合正极材料.采用XRD、SEM、CV和充放电循环测试等方法分析和表征材料的结构、形貌和电化学性能.结果表明,烧结方式对所得材料的结晶度、晶粒大小、碳含量、合成温度以及电化学性能均有显著影响.真空烧结所得材料结晶度高,而动态气氛烧结对材料颗粒细化及均匀化都有积极影响,同时也能有效促进锂离子扩散动力学.动态气氛烧结可将材料的烧结温度降低到500℃,且所得材料表现出优异的电化学性能.0.5C倍率下循环首次放电比容量达到163.4 mAh/g,50次循环后容量保持率为99.02%.  相似文献   

17.
在溶液中制备FePO_4·2H_2O前驱体,利用氢气还原法于650℃制得了锂离子电池正极材料LiFePO_4,并对其进行了包覆和掺杂.采用X射线衍射法(XRD)、扫描电镜法(SEM)、循环伏安法(C-V)、交流阻抗法(EIS)及充放电测试对材料进行了结构表征和电化学性能测试.结果表明,该方法制得的材料具有单一的橄榄石结构,样品形貌规则、颗粒均匀.包覆碳和掺镁后,材料具有较低的阻抗及较高的首次放电比容量,LiFePO_4、LiFePO_4/C、LiMg_(0.01)Fe_(0.99)PO_4/C的首次放电比容量分别为125.09mA·h/g、139.17mA·h/g、146.97mA·h/g.  相似文献   

18.
F掺杂 LiFePO4/C的固相合成及电化学性能   总被引:1,自引:0,他引:1  
用廉价三价铁离子化合物为铁源,聚丙烯作还原剂和碳源,两步固相法合成F掺杂原位碳包覆LiFePO4正极材料.结果表明,合成产物具有完整的橄榄石型LiFePO4晶体结构,粉末形状近似球形,尺寸分布在50~200nm范围内,两步固相法更好地抑制了LiFePO4晶粒的长大.电化学测试结果表明,F掺杂提高了材料倍率放电性能,有效降低了材料电极的极化.在1C,2C,3C(C为150mA/g)充放电倍率下,LiFePO3.98F0.02/C的比容量分别为146mAh/g,137mAh/g,122mAh/g,1C循环55次后放电容量达到初始容量的99.3%.  相似文献   

19.
利用不同的锂化合物Li2CO3、LiOH.H2O、LiNO3、LiF作为锂源,采用二步固相法合成了LiFePO4/C,研究了不同锂源对LiFePO4组织结构和电化学性能的影响。结果表明,在相同的合成工艺条件下,采用4种不同锂源合成的LiFePO4的电化学性能表现出明显差异。采用LiOH.H2O合成的LiFe-PO4的电化学性能最佳,0.1C下的放电比容量为161mAh/g,1C下的放电比容量达117mAh/g,且0.5C下循环容量无衰减。采用不同锂源合成的LiFePO4电化学性能差异的原因与LiFePO4的颗粒大小、粒径分布、团聚程度及是否存在杂相有直接关系。  相似文献   

20.
溶胶-凝胶法制备尖晶石型LiMn_2O_4正极材料   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了锂离子电池正极材料锂锰氧化物。以Mn(NO3)2(50%)、LiOH·2H2O为原料,以柠檬酸为螯合剂制得前驱体,400℃预烧6h,再经750、850℃分别焙烧并保温6h得到粉体产物。XRD分析表明,所合成的产物为尖晶石型LiMn2O4;SEM观察结果表明,合成产物颗粒均匀,形貌规则。用其组装的电池经恒电流充放电测试,表明其初始比容量可达118.76mAh/g,具有良好的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号