首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
硫酸钙骨水泥具有良好的骨传导性,但降解速率快、生物活性差的缺点限制了其临床应用.本文将β-磷酸三钙纳米颗粒(粒径43.8±9.0 nm)和半水硫酸钙颗粒(粒径5–21μm)混合作为固相,与液相聚乙烯醇溶液(5 wt.%)按优化重量比混匀,制备了可注射自固化复合材料.该材料具有合理的自固化时间(11.7–19.2 min)及适宜的压缩强度(2.28–6.33 MPa).同时,利用镁颗粒作为成孔剂,制备出大孔径(大于100μm)的多孔支架.体外细胞实验显示,MC3T3-E1细胞伸展良好,表现出大量的板状伪足和伸展的丝状伪足,表明该复合材料无细胞毒性.将可注射复合材料植入比格犬股骨髁缺损区,10个月后骨缺损愈合良好,表明该材料具有良好的骨缺损修复潜力.  相似文献   

2.
Abstract Biomineralization processes result in organic/inorganic hybrid materials with complex shapes, hierarchical structures, and superior material properties. Recent developments in biomineralization and biomaterials have demonstrated that calcium phosphate particles play an important role in the formation of hard tissues in nature. In this paper, current concepts in biomineralization, such as nano assembly, biomimetic shell structure, and their applications are introduced. It is confirmed experimentally that enamel- or bone-liked apatite can be achieved by oriented aggregations using nano calcium phosphates as starting materials. The assembly of calcium phosphate can be either promoted or inhibited by different biomolecules so that the kinetics can be regulated biologically. In this paper, the role of nano calcium phosphate in tissue repair is highlighted. Furthermore, a new, interesting result on biomimetic mineralization is introduced, which can offer an artificial shell for living cells via a biomimetic method.  相似文献   

3.
新型可降解钙磷骨水泥多孔支架研究   总被引:2,自引:0,他引:2  
采用一种特殊的方法制备了孔径、孔隙率和孔形状可控的多孔羟基磷灰石骨水泥支架. 材料的抗压强度可达4MPa, 孔隙率可达70%, 孔与孔之间互相贯通, 大孔壁富含微孔. 细胞在材料表面黏附铺展且增殖良好, 体外模拟实验显示材料的降解速度随孔隙率的增加和Ca/P比的降低而加快, 多孔支架有优良的生物降解性和生物相容性. 该材料可用于修复骨组织缺损和作为支架材料用于组织工程.  相似文献   

4.
Nanocrystalline calcium phosphate based bioceramics are the new rage in biomaterials research. Conventionally, calcium phosphates based materials are preferred as bone grafts in hard tissue engineering because of their superior biocompatibility and bioactivity. However, this group of bioceramics exhibits poor mechanical performance, which restricts their uses in load bearing applications. The recent trend in bioceramic research is mainly concentrated on bioactive and bioresorbable ceramics, i.e. hydroxyapatite, bioactive glasses, tricalcium phosphates and biphasic calcium phosphates as they exhibit superior biological properties over other materials. In recent times, the arena of nanotechnology has been extensively studied by various researchers to overcome the existing limitations of calcium phosphates, mainly hydroxyapatite, as well as to fabricate nanostructured scaffolds to mimic structural and dimensional details of natural bone. The bone mineral consists of tiny HAp crystals in the nano-regime. It is found that nanocrystalline HAp powders improve sinterability and densification due to greater surface area, which could improve the fracture toughness and other mechanical properties. Nano-HAp is also expected to have better bioactivity than coarser crystals. Nanocrystalline calcium phosphate has the potential to revolutionize the field of hard tissue engineering from bone repair and augmentation to controlled drug delivery devices. This paper reviews the current state of knowledge and recent developments of various nanocrystalline calcium phosphate based bioceramics from synthesis to characterization.  相似文献   

5.
Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.  相似文献   

6.
以掺锶β-磷酸三钙/硫酸钙为原料,利用搅拌喷雾干燥法制备出掺锶β-磷酸三钙/硫酸钙复合小球,再将硅胶与制备的复合小球复合,通过在模具中堆垛聚集的方法,制备出硅胶/掺锶β-磷酸三钙/硫酸钙复合生物支架。采用XRD,SEM,FT-IR等方法分析制得复合多孔支架的成分、形貌以及结构特征,并研究复合生物支架的降解性、孔隙率、力学性能和细胞毒性等。结果表明:该复合多孔生物支架具有一定的不规则孔洞结构,小球与小球之间的孔隙约为0.2~1mm,而每个小球上也有大量的微孔,孔径在50~200μm之间,且平均孔隙率达到62%,基本能满足骨组织工程支架对孔隙率的要求;该复合多孔支架无细胞毒性,其降解周期约为80天,抗压强度约为0.1MPa,因此该支架在非承重骨组织修复方面具有良好的应用前景。  相似文献   

7.
陶艳  李东旭  李延报 《材料导报》2011,(3):121-124,131
可注射磷酸钙骨水泥以其良好的生物相容性、骨传导性和可降解性等优点被广泛应用于临床的骨替换和修复等领域。综述了磷酸钙骨水泥(CPC)注射性能的评价指标,提出了评价CPC注射性能的有效方法,讨论了骨水泥的注射体系、制备方法和组成等对CPC注射性能的改进措施,并在此基础上探讨了CPC存在的问题及对策。  相似文献   

8.
An alternative approach to bone repair for less invasive surgical techniques, involves the development of biomaterials directly injectable into the injury sites and able to replicate a spatially organized platform with features of bone tissue. Here, the preparation and characterization of an innovative injectable bone analogue made of calcium deficient hydroxyapatite and foamed gelatin is presented. The biopolymer features and the cement self-setting reaction were investigated by rheological analysis. The porous architecture, the evolution of surface morphology and the grains dimension were analyzed with electron microscopy (SEM/ESEM/TEM). The physico-chemical properties were characterized by X-ray diffraction and FTIR analysis. Moreover, an injection test was carried out to prove the positive effect of gelatin on the flow ensuing that cement is fully injectable. The cement mechanical properties are adequate to function as temporary substrate for bone tissue regeneration. Furthermore, MG63 cells and bone marrow-derived human mesenchymal stem cells (hMSCs) were able to migrate and proliferate inside the pores, and hMSCs differentiated to the osteoblastic phenotype. The results are paving the way for an injectable bone substitute with properties that mimic natural bone tissue allowing the successful use as bone filler for craniofacial and orthopedic reconstructions in regenerative medicine.  相似文献   

9.
The development of bone replacement materials is an important objective in the field of orthopaedic surgery. Due to the drawbacks of treating bone defects with autografts, synthetic bone graft materials have become optional. So in this work, a bone tissue engineering approach with radiopaque bioactive strontium incorporated calcium phosphate was proposed for the preliminary cytocompatibility studies for bone substitutes. Accumulating evidence indicates that strontium containing biomaterials promote enhanced bone repair and radiopacity for easy imaging. Hence, strontium calcium phosphate (SrCaPO4) and hydroxyapatite scaffolds have been investigated for its ability to support and sustain the growth of rabbit adipose-derived mesenchymal stem cells (RADMSCs) in vitro. They were characterized via Micro-CT for pore size distribution. Cells used were isolated from New Zealand White rabbit adipose tissue, characterized by FACS and via differentiation into the osteogenic lineage by alkaline phosphatase, Masson’s trichome, Alizarin Red and von Kossa staining on day 28. Material-cell interaction was observed by SEM imaging of cell morphology on contact with material. Live–Dead analysis was done by confocal laser scanning microscopy and cell cluster analysis via μCT. The in vitro biodegradation, elution and nucleation of apatite formation of the material was evaluated using simulated body fluid and phosphate buffered saline in static regime up to 28 days at 37 °C. These results demonstrated that SrCaPO4 is a good candidate for bone tissue engineering applications and with osteogenically-induced RADMSCs, they may serve as potential implants for the repair of critical-sized bone defects.  相似文献   

10.
董浩  叶建东  王秀鹏 《功能材料》2006,37(11):1805-1807,1811
磷酸钙骨水泥组织工程支架材料具有良好的生物相容性和骨传导性,是一种良好的骨组织工程支架材料,但是这种材料存在力学性能差的缺点,限制了它的应用.本文采用生物相容性良好的可降解明胶材料与磷酸钙骨水泥支架进行复合,制备出的明胶/磷酸钙骨水泥复合支架材料,其压缩强度可达3.7MPa,比复合前磷酸钙支架材料的强度提高了37倍,而且材料具有良好的柔韧性,适合用作为非承重部位骨组织缺损修复用组织工程支架材料.  相似文献   

11.
Calcium phosphate ceramics, commonly applied as bone graft substitutes, are a natural choice of scaffolding material for bone tissue engineering. Evidence shows that the chemical composition, macroporosity and microporosity of these ceramics influences their behavior as bone graft substitutes and bone tissue engineering scaffolds but little has been done to optimize these parameters. One method of optimization is to place focus on a particular parameter by normalizing the influence, as much as possible, of confounding parameters. This is difficult to accomplish with traditional fabrication techniques. In this study we describe a design based rapid prototyping method of manufacturing scaffolds with virtually identical macroporous architectures from different calcium phosphate ceramic compositions. Beta-tricalcium phosphate, hydroxyapatite (at two sintering temperatures) and biphasic calcium phosphate scaffolds were manufactured. The macro- and micro-architectures of the scaffolds were characterized as well as the influence of the manufacturing method on the chemistries of the calcium phosphate compositions. The structural characteristics of the resulting scaffolds were remarkably similar. The manufacturing process had little influence on the composition of the materials except for the consistent but small addition of, or increase in, a beta-tricalcium phosphate phase. Among other applications, scaffolds produced by the method described provide a means of examining the influence of different calcium phosphate compositions while confidently excluding the influence of the macroporous structure of the scaffolds.  相似文献   

12.
磷酸钙微球骨修复材料研究进展   总被引:1,自引:0,他引:1  
李波  徐文峰  廖晓玲 《无机材料学报》2014,29(10):1009-1017
磷酸钙微球具有良好的渗透性、高的比表面积、低致密度和较好的力学性能,在分离、催化、传感、组织工程和药物释放等方面均有应用。本文综述了近年来磷酸钙陶瓷微球在组织工程和药物释放等骨修复相关领域的研究进展, 介绍了实心、多孔、空心和花瓣状等四种不同结构磷酸钙陶瓷微球制备方法以及在骨修复领域中的应用, 并归纳总结了各类微球具有的优缺点和改进的方向, 为骨修复用磷酸钙微球的设计和制备提供较系统的参考。  相似文献   

13.
Calcium phosphate bioceramic granules associated with hydrosoluble polymers were developed as bone substitutes for various maxillofacial and orthopaedic applications. These injectable bone substitutes, support and regenerate bone tissue and resorb after implantation. The efficiency of these multiphasic materials is due to the osteogenic and osteoconductive properties of the microporous biphasic calcium phosphate. The associated hydrosoluble polymers are considered as carriers in order to achieve the rheological properties of injectable bone substitutes (IBS). In this study, we used 2 semi synthetic hydrosoluble polymers of polysaccharidic origin. The hydroxy propyl methyl cellulose (HPMC), with and without silane, was combined with microporous BCP granules. The presence of silane induced considerable gelation of the suspension. The 2 IBS used (without gelation, IBS1, with gelation, IBS2) were implanted in critical size femoral epiphysis defects in rabbits. No foreign body reactions were observed in either sample. However, because of the higher density from gelation, cell colonisation followed by bone tissue ingrowth was delayed over time with IBS2 compared to the IBS1 without gelation. The results showed resorption of the BCP granule and bone ingrowth at the expense of both IBS with different kinetics. This study demonstrates that the hydrogel cannot be considered merely as a carrier. The gelation process delayed cell and tissue colonisation by slow degradation of the HPMC Si, compared to the faster release of HPMC with IBS1, in turn inducing faster permeability and spaces for tissue ingrowth between the BCP granules.  相似文献   

14.
An ageing population implies an increase in bone and dental diseases, which are in turn a source of numerous handicaps. These pathologies are an expensive burden for the European health system. As no specific bioactive materials are efficient enough to cope with this burden, we have to develop an injectable, mouldable, self-hardening bone substitute to support bone tissue reconstruction and augmentation.New, highly bioactive and suitable biomaterials have been developed to replace bone grafts in orthopedic revision and maxillofacial surgery for bone augmentation. These mouldable, self-hardening materials are based on the association of MBCP® Biphasic Calcium Phosphate Granules and Tissucol® Fibrin Sealant. The in vivo evaluation of ingrowth in relation to the composite was made in an experiment on rabbits. The results indicate that in the presence of fibrin sealant, newly-formed bone developed at a small distance from the surface of the calcium phosphate ceramic. Two different bone apposition processes were identified. Without the fibrin component (MBCP group), bone rested directly on the surface of the granules. This observation is commonly described as osteoconduction in calcium phosphate materials. On the contrary, the presence of the fibrinogen component seemed to modify this standard osteoconduction phenomenon: the newly-formed bone essentially grew at a distance from the surface of the granules, on the fibrillar network, and could be considered as an inductive phenomenon for osteogenic cell differentiation from mesenchymal stem cells.  相似文献   

15.
压电材料产生的电信号能够促进成骨细胞增殖分化, 但不具有良好的诱导矿化能力; 生物活性材料在生理环境下能够诱导类骨羟基磷灰石的沉积, 但又不能产生电信号促进成骨。因此, 开发出一种既能产生电信号, 又能诱导矿化沉积的复合生物活性压电材料, 具有重要意义。本研究以钛酸钡为压电组分, 以硅酸钙为生物活性组分, 采用固相烧结法制备了钛酸钡/硅酸钙复合生物活性压电陶瓷, 测试了压电性能, 并用体外矿化实验评价了诱导矿化能力。硅酸钙复合含量达到30%时, 复合陶瓷仍具有一定的压电性能(d33=4 pC·N-1), 并且能够在模拟体液中诱导磷酸钙沉积。钛酸钡与硅酸钙的复合能够同时具有压电性和生物活性, 为骨修复材料提供了新的选择。  相似文献   

16.
Recent advances in the production and use of natural bioceramics for applications in hard and soft tissue replacement are discussed. The synthesis of complex inorganic forms, which are based on natural structures that can mimic natural scaffold, upon which the cells are seeded, offers an exciting range of avenues for the construction of a new generation bone analogs for tissue engineering. The use of natural and synthetic calcium phosphate bioceramics as bone grafts in orthopaedics and dentistry is considered. Issues affecting the use of different materials in vivo are outlined, of particular importance are osteoconductivity (ability to support tissue ingrowth and bone formation) and osteogenicity (formation of bone from cells within a bone graft). A variety of other natural alternatives including sol–gel coated coralline apatite are evaluated, and other key success factors (strength, longevity and stability) are reviewed. Several treatments for improving performance are outlined, and speculation on future advances, including combination of traditional bioceramic implants with more recent advances in stem cell research is made.  相似文献   

17.
硅酸盐生物活性陶瓷用于骨组织修复及再生的研究   总被引:1,自引:0,他引:1  
近年来, 硅酸盐生物活性陶瓷越来越受到研究人员的重视, 其主要原因在于硅酸盐生物陶瓷能够通过释放硅(Si)离子等生物活性离子, 显著地促进骨组织细胞的增殖、分化及骨组织修复. 硅酸盐生物活性陶瓷有望作为新的陶瓷体系广泛应用于骨缺损修复和再生。本文将结合本课题组在过去十年的研究, 重点介绍目前硅酸盐生物活性陶瓷用于骨组织修复及再生的研究进展。同时, 通过与传统磷酸钙类生物陶瓷进行比较, 对硅酸盐生物活性陶瓷的优缺点进行分析和归纳, 最后对硅酸盐陶瓷作为新的生物陶瓷体系用于骨组织修复的前景做了展望。  相似文献   

18.
Hydroxyapatite foams are potential synthetic bone grafting materials or scaffolds for bone tissue engineering. A novel method to obtain injectable hydroxyapatite foams consists in foaming the liquid phase of a calcium phosphate cement. In this process, the cement powder is incorporated into a liquid foam, which acts as a template for macroporosity. After setting, the cement hardens maintaining the macroporous structure of the foam. In this study a low molecular weight surfactant, Polysorbate 80, and a protein, gelatine, were compared as foaming agents of a calcium phosphate cement. The foamability of Polysorbate 80 was greater than that of gelatine, resulting in higher macroporosity in the set hydroxyapatite foam and higher macropore interconnectivity. Gelatine produced less interconnected foams, especially at high concentrations, due to a higher liquid foam stability. However it increased the injectability and cohesion of the foamed paste, and enhanced osteoblastic-like cell adhesion, all of them important properties for bone grafting materials.  相似文献   

19.
磷酸钙/聚氨酯(CaP/PU)复合骨修复支架制备过程中随着材料体系粘度逐渐增大, 后期加入的发泡剂难于均匀分散, 影响支架孔隙率及孔结构均匀性。本研究在CaP/PU材料合成过程中将发泡剂水以磷酸氢钙结晶水合物(DCPD)的形式均匀复合在材料中, 在一定条件下释放结晶水与聚氨酯(PU)中的异氰酸根反应生成CO2, 实现自发泡成型。实验结果显示, 90 ℃条件下自发泡制备的CaP/PU支架孔隙率高、孔结构均匀、贯通性好。将90 ℃发泡成型的CaP/PU多孔支架在110 ℃再熟化处理, 可提高支架的力学性能高达1倍以上。该方法简便易行, 为聚氨酯基多孔支架的制备提供了新思路。  相似文献   

20.
The reconstruction and repair of large bone defects, resulting from trauma, cancer or metabolic disorders, is a major clinical challenge in orthopaedics. Clinically available biological and synthetic grafts have clear limitations that necessitate the development of new graft materials and/or strategies. Human mesenchymal stem cells (MSCs), obtained from the adult bone marrow, are multipotent cells capable of differentiating into various mesenchymal tissues. Of particular interest is the ability of these cells to differentiate into osteoblasts, or bone-forming cells. At Osiris, we have extensively characterized MSCs and have demonstrated MSCs can induce bone repair when implanted in vivo in combination with a biphasic calcium phosphate, specifically hydroxyapatite/tricalcium phosphate. This article reviews previous and current studies utilizing mesenchymal stem cells and biphasic calcium phosphates in bone repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号