首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
建立了锅炉二次风箱到炉膛出口的压降计算模型,基于该模型,给出锅炉二次风挡板特性冷态试验数据的处理方法:挡板在100%开度下的阻力系数作为已知常数,采用该开度状态下二次风箱到炉膛出口压降的试验结果,确定炉膛阻力系数;再利用其它挡板开度下的试验数据,得到挡板不同开度下的阻力系数。根据炉膛和挡板的阻力系数以及风箱-炉膛差压测量值,可以确定热态运行时各个二次风喷口的风速,这使得对炉内风粉分布的监测成为可能,对于低NO_x燃烧系统,炉内风粉分布监测和调整是优化锅炉燃烧,减少汽温波动的重要手段。  相似文献   

2.
为实现空气分级低NOx燃烧锅炉主燃烧区过剩空气系数的在线监控,提高该类燃烧系统的运行水平,以二次风挡板作为一次元件,利用二次风箱到炉膛出口的压降模型对二次风喷嘴的空气流量进行测量;在此基础上,根据锅炉冷热态试验数据,综合考虑颗粒燃烬、NOx排放量以及风机输送电耗等因素,建立空气分级低NOx燃烧锅炉炉内风粉分布的优化模型,在给定燃料喷嘴运行方式和炉膛出口过剩空气系数的条件下,对二次风挡板开度进行优化。一台300 MW锅炉的应用表明,炉膛配风优化后,烟气NOx排放和颗粒燃尽度得到良好协调,且在保证NOx排放量为255 mg/m~3的情况下,优化后风箱-炉膛差压降低191 Pa,减少了风机电耗。  相似文献   

3.
针对某75 t/h循环流化床锅炉炉膛出口NOx排放超标问题进行分析探讨,以合理的低氮燃烧控制技术为主,辅以SNCR烟气脱硝技术,争取达到NO x超净排放要求。采用CPFD计算方法对循环流化床锅炉炉膛内的气固流动和燃烧特性进行数值模拟,运用低过量空气燃烧法和空气分级技术对锅炉进行低氮燃烧控制,研究一、二次风配比、二次风射流、过量空气系数、循环倍率和颗粒粒径等因素对炉内燃烧及NO x排放的影响。结果表明:通过低氮燃烧控制后,炉内速度场和温度场分布均匀,炉膛出口处烟气流速增加,炉膛平均烟温和出口氧浓度降低,还原性气体CO浓度和优化前基本相同,炉膛出口NOx浓度降低,减排效果显著,为以后的锅炉运行提供实际指导经验。  相似文献   

4.
  [目的]  为了分析火电机组超低负荷运行工况下过量空气系数对于炉膛燃烧稳定性的影响,更好地指导机组参与调峰。  [方法]  通过深入分析锅炉运行和炉内传热机理,以炉膛出口烟温表征炉内燃烧温度,并作为燃烧稳定性的指标,在MATLAB/SIMULINK中搭建炉膛出口烟温模型。以某300 MW火力发电机组为例,首先选择几个典型工况点采用相似性求解方法计算炉膛出口烟温与锅炉厂家给出的设计数据进行比对,检验计算方法基本正确之后代入超低负荷运行参数,计算深调峰工况下不同过量空气系数对应的炉膛出口烟温。  [结果]  仿真结果表明:模型算得炉温与锅炉厂家给出的设计数据对比,计算误差小于±15 ℃,计算方法基本正确,可以将其应用于超低负荷工况计算。  [结论]  随着负荷的降低,使炉膛出口烟温达到最大值的最优过量空气系数逐渐增大。因此在超低负荷运行工况下,可在一定范围内适当增大过量空气系数以提高炉膛出口烟温,进而提高锅炉燃烧的稳定性,并且过量空气系数小于2.0时,数值越大炉膛出口烟温越高。  相似文献   

5.
提出了采用BP神经网络模型与改进热力计算相结合的方法确定锅炉运行参数基准值。计算中采用BP神经网络模型预测飞灰含碳量的基准值,并根据锅炉运行负荷选取炉膛出口烟气温度计算公式,采用登山原理确定过量空气系数的方法确定关键运行参数基准值。最后,以一台HG1025/18.2-M锅炉为例,计算70%、50%负荷下该锅炉运行参数的基准值,得到随着锅炉负荷的降低炉膛出口过量空气系数明显增加,飞灰含碳量和机械未完全燃烧热损失显著降低。证明该方法能够很好地反映锅炉负荷、煤质特性参数改变对运行参数基准值的影响。  相似文献   

6.
锅炉机械不完全燃烧损失q4解析评估模型研究   总被引:1,自引:0,他引:1  
针对传统计算机械不完全燃烧损失不利于在线耗差寻找的问题 ,通过理论推导和试验分析研究 ,推导出基于煤质特性与运行特性的锅炉机械不完全燃烧损失解析评估模型 ,实现了造成 q4 变化之因素的定量寻找。并分别以煤质特性参数可燃基挥发分Vdaf和运行特性参数炉膛出口过量空气系数αl 为例 ,验证了模型的精确性 ,为节能降耗提供依据  相似文献   

7.
为了研究风箱二次风流量分配特性及其对锅炉燃烧特性的影响,在不同二次风风门开度工况下对一台600 MW超临界前后墙旋流对冲锅炉进行数值模拟。结果表明:在相同的二次风风门开度下,各燃烧器流量分配呈现出中间大、两边小的不均匀特性;随着二次分风风门开度减小,燃烧器流量分配不均匀特性逐渐增强,当二次风风门开度由100%减小到40%时,燃烧器之间的流量偏差系数由3.51%增加到6.17%;沿炉膛宽度方向,中心区域氧体积分数较高,两侧区域氧体积分数较低,靠近两侧墙燃烧器的煤粉未燃尽部分是锅炉煤粉未燃尽部分的主要来源;二次风流量分配不均匀性越大,飞灰含碳量、烟气中CO质量分数和炉膛出口NO_x质量分数越大;燃烧器流量分配不均,锅炉燃烧效率下降。  相似文献   

8.
三井巴布科克公司的W火焰锅炉技术,受锅炉结构及风箱位置等因素的制约,使得内直流外旋流的燃尽风喷口不能设置单独的调节装置调节旋流强度,故对燃尽风喷口的结构设计提出更高的要求。利用冷态模化试验和CFD数值模拟软件获得燃尽风喷口的阻力特性和流动特性。使燃尽风与锅炉的热工过程相匹配,实现封闭主流烟气,保证燃烧效率的作用。应用结果表明:当叶片与轴线的夹角为25°-30°时,燃尽风喷口出口射流的旋转动量矩衰减较慢,旋转动能可有效传递至炉膛中心,使得此处的可燃物质与空气充分混合,保证燃尽度。  相似文献   

9.
针对某台燃烧器竖直布置于炉顶的倒置炉膛煤粉工业锅炉运行期间出现炉膛出口烟温实际值低于设计值问题,以热力计算为基础,使用不同炉膛出口烟温计算公式对炉膛出口烟温实际值低于设计值问题展开分析研究。通过计算结果对比分析发现,与电站锅炉火焰中心多是水平方向的偏移不同,锅炉负荷、三次风等造成火焰中心竖直方向的偏离是导致该锅炉炉膛出口烟温实际值低于设计值的主要因素,结合锅炉负荷及三次风变化对炉膛出口烟温的影响引入无量纲参数Sf,利用多元回归分析方法对火焰中心影响因子M进行修正;将炉膛出口烟温设计值与实测值缩小至0~20℃之间,得到了更能反应锅炉实际运行状态的炉膛出口烟温计算公式。  相似文献   

10.
为了解采用OPCC旋流燃烧器、2层燃尽风布置的某1 000 MW超超临界前后墙对冲燃烧锅炉的NO_x排放特性,采用现场试验的方法对该锅炉进行了系统研究,得到燃烧器投运方式、炉膛氧体积分数、燃尽风挡板开度、燃烧器外二次风叶片角度、燃烧器内二次风挡板开度、燃烧器中心风挡板开度和燃尽风喷口外二次风刻度位置、燃烧器负荷分配方式、机组负荷及煤种等因素对NO_x质量浓度的影响。结果表明:燃烧器投运方式、炉膛氧体积分数及煤种对NO_x质量浓度的影响较大,影响幅度可达13%~20.2%;燃尽风挡板开度、燃烧器内二次风挡板开度、燃烧器负荷分配方式和机组负荷对NO_x质量浓度的影响较小,影响幅度为4%~6%;燃烧器外二次风叶片角度、燃尽风喷口外二次风刻度位置和燃烧器中心风挡板开度对NO_x质量浓度的影响微弱。  相似文献   

11.
锅炉烟尘测试时,必须对锅炉出力进行测试。但监测中,许多小型锅炉往往不具备相关的计量装置和仪表,为解决这一问题,文章提出了用烟气量和空气过剩系数来计算锅炉的出力的公式,在实际使用中,该方法简单易行,其结果和实测值具有很好的一致怀。  相似文献   

12.
气门圆弧形锁夹槽中心至杆端面以及至盘锥面量规线的距离(如图1中L、H). 在过程检验中如用普通量具难以测量,如用仪器测量则速度慢,效率低.为便于生产过程控制,确保工序质量,我们采用锁夹槽定位,用标准件比较测量的专用检具(如图2)进行测量.为保证锁夹槽定位准确以适应不同型号的气门,并防止气门测量时轴向窜动和左右摆动,采用了V型定位叉,使锁夹槽以四点定位,V型叉口的宽度,根据锁夹槽圆弧半径大小确定:约为圆弧的三分之二处(图3,图4).  相似文献   

13.
The issues related to the reliability of hydrogen engines of unmanned vehicles and increasing the efficiency of using hydrogen as fuel when using the method of its production during the decomposition of hydrogen-containing molecules of liquid-phase organic compounds in a plasma discharge under the action of intense ultrasonic exposure are considered. Experiments have shown that as a result of decomposition in the acoustoplasma discharge of liquid hydrocarbons, solid-phase carbon-containing products are formed, chemical transformations occur in the liquid phase and hydrogen-containing combustible gas is formed. Hydrogen-containing gas can be used as fuel immediately after synthesis, i.e. it does not require separation, since in addition to hydrogen it contains only impurities of CO2 and water vapor. The purpose of the study is to formalize the basic conditions for tightening the control of mutual compliance with the efficiency of hydrogen engines of the same series in the conditions of their mass production. Methods of mathematical statistics and hardware-software modeling were used in the study. The term “unerroric of quality mutual compliance control” is introduced to describe a set of hardware and software tools for such control. The principle of in-depth testing of the technical condition of such engines of one series is described in a multidimensional formulation of the quality control problem for three of their operating parameters at once. The conditions for increasing the mutual correspondence of the measured values of such parameters in the conditions of serial production of hydrogen engines are formalized.  相似文献   

14.
朱成章 《中国能源》2001,(12):14-16
世界发电燃料结构在不断的转换过程中。18世纪60年代从薪柴转到煤炭,19世纪到20世纪初大量发展燃煤电厂;20世纪20年代又从煤炭转向石油和天然气,20年代上半叶又大量发展燃油电厂;20世纪末由于天然气生产的发展,天然气因环境影响小,受到工业发达国家的青睐,加速发展天然气电厂。我国70年代初和90年代曾两次发展燃油电厂,由于石油危机和石油价格暴涨而受到制约,不得不实行以煤代油,改造燃油电厂。现在似乎认为燃油电厂不能再搞,但又出现发展燃气电厂的热流,发展燃气电厂确实是当今的世界潮流,但是同当年发展燃油电厂一样,要研究是否符合中国的国情?  相似文献   

15.
文章介绍了在煤焦混粉燃烧的情况下,粉尘化学成分和粉尘比电阻的变化对静电除尘器效率的影响。  相似文献   

16.
本文从新型活塞设计的趋势及其对活塞车床的功能要求,讨论活塞车床的设计方案,并从机床功能、造型和宜人性上进行分析。  相似文献   

17.
中国煤炭地下气化技术的发展   总被引:2,自引:0,他引:2  
马驰  余力  梁杰 《中国能源》2003,158(2):11-15
本文综述了煤炭地下汽化技术的国内外发展现状,对我国“长通道、大断面”煤炭地下气化新工艺给予了技术经济评述,并提出了发展煤炭地下汽化技术的政策建议。  相似文献   

18.
平江抽水蓄能电站泵送混凝土使用的花岗岩为主的人工细骨料,云母含量较高.通过分选工艺降低游离云母的机制砂配制混凝土,性能试验结果表明:分选后机制砂混凝土拌和物混凝土用水量减少,混凝土工作性能提高,混凝土的抗冻性能得到改善.  相似文献   

19.
提高日光温室太阳能利用率的措施   总被引:1,自引:0,他引:1  
姜晨光  吕中谦 《新能源》2000,22(12):91-93
根据天文学,气象学,地理学的基本原理,在实验的基础上提出了日光温室提高太阳能利用率的措施。  相似文献   

20.
本文对漫灰均温物体在常物性条件下对外辐射传热的Yong值计算建立了数学模型。通过与物体内能Yong公式的数值计算比较,得出了辐射能量的Yong值不大于内能Yong值的结论。从初步的热射Yong值计算公式发现。Yong与物体表面辐射率有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号