首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A protein kinase that phosphorylates a specific KSP sequence [K(S/T)PXK], which is abundant in high molecular weight neurofilament (NF) proteins, was identified and isolated from rat spinal cord. Characterization of this enzyme activity revealed a close relationship with p34cdc2 kinase with respect to its molecular mass (32.5 kDa by SDS/PAGE) and substrate specificities. It could phosphorylate a synthetic peptide analog of the simian virus 40 large tumor antigen, reportedly a specific substrate for p34cdc2 kinase. Histone (H1) and peptide analogs of the KSP sequence present in the C-terminal end of rat and mouse neurofilament proteins were phosphorylated. This kinase did not phosphorylate alpha-casein and peptide substrates of other known second messenger-dependent or -independent kinases. Dephosphorylated rat NF protein NF-H was strongly phosphorylated by the purified enzyme; NF proteins NF-M and native NF-H, but not NF-L, were slightly phosphorylated. Studies on synthetic peptide analogs of KSP repeats with substitution of specific residues, known to be present in the C-terminal regions of NF-H, revealed a consensus sequence of X(S/T)PXK, characteristic of the p34cdc2 kinase substrate. On Western blots, the enzyme was immunoreactive with antibody against the C-terminal end of cdc2 kinase (mouse) and neuronal cdc2-like kinase from rat but not with an antibody against the conserved PSTAIRE region of the p34cdc2 kinase. The antibody against the C-terminal end of cdc2 kinase could immunoprecipitate (immunodeplete) the purified kinase activity. Since the adult nervous system is composed primarily of postmitotic cells, the present observations indicate a nonmitotic role for this cdc2-like kinase activity. The effective phosphorylation of NF-H by this kinase suggests a function in axonal structure.  相似文献   

2.
The side-arm domain of neurofilament heavy-chain (NF-H) is heavily phosphorylated in axons. Much of this phosphate is located within a multiphosphorylation repeat (MPR) domain situated toward the carboxy terminus of the molecule. The MPR domain contains the repeat motif KSP of which there are two broad categories, KSPXX and KSPXK. In mouse NF-H, the KSPXK repeats are situated toward the latter part of the MPR domain. We have expressed in mammalian cells fragments of mouse NF-H side-arm containing all of the MPR domain, the latter part of the MPR domain containing the KSPXK repeats, and the complementary amino-terminal part of the MPR domain, which contains the KSPXX repeats. By cotransfecting these fragments with the neurofilament kinases cyclin-dependent kinase-5 (cdk-5)/p35 and glycogen synthase kinase-3alpha (GSK-3alpha), we show that cdk-5 induces cellular phosphorylation of the KSPXK-containing fragment of NF-H. Using the transfected fragments, we also map the epitopes for several commonly utilised NF-H monoclonal antibodies and describe the effects that phosphorylation by cdk-5 and GSK-3alpha have on their reactivities.  相似文献   

3.
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester that produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in hens 7-14 days after a single s.c. dose of 1.7 mg/kg. In this study, hens were treated with a single dose of DFP (1.7 mg/kg, s.c.) 24 hr after [35S]methionine injection into the sacrolumbar region of their spinal cord, and killed 3, 7, 14, or 27 days post-DFP treatment. The rates of transport of labeled high (NF-H), medium (NF-M), and low (NF-L) molecular weight neurofilaments, and tubulin were faster in DFP-treated birds than in controls after 3 days. Subsequently, the rate of transport of these proteins started falling, so that the peaks of labeled proteins in control and DFP-treated hens were overlapping after 7 days. At 14 days, the peaks of NF-H, NF-M, and NF-L in treated hens were distinctly behind the corresponding peaks in control hens. This was again followed by an increase in transport of NF-H and NF-L, but not of NF-M, so that the labeled NF-H and NF-L showed the same pattern in control and treated hens after 27 days. The transient decrease in NF-H and NF-L axonal transport rate, and recovery correlated in a temporal manner with the previously reported increase of Ca2+/calmodulin-dependent protein kinase-mediated phosphorylation of neurofilament proteins and inhibition of calpain activity in the sciatic nerve in OPIDN. Proteinase inhibition has been reported recently to result in enhanced phosphorylation of neurofilaments in some cells. The present study suggests that the enhanced phosphorylation of neurofilaments by DFP-increased Ca2+/calmodulin-dependent protein kinase activity may be contributing toward alteration in NF axonal transport and the development of OPIDN.  相似文献   

4.
A new method for the characterization of serine and threonine phosphorylation sites in proteins has been developed. After modification of a phosphoprotein by beta-elimination/ethanethiol addition and conversion of phosphoserine and phosphothreonine residues to S-ethylcysteinyl or beta-methyl-S-ethylcysteinyl residues, the modified protein was subjected to proteolytic digestion. Resulting digests were analyzed by a combination of microbore liquid chromatography, electrospray ionization tandem (MS/MS) ion trap mass spectrometry and database searching to identify original phosphorylated residues. The computer program utilized (SEQUEST) is capable of identifying peptides and modified residues from uninterpreted MS/MS spectra, and using this method, all of the five known phosphorylation sites in bovine beta-casein were identified. Application of the method to multiply phosphorylated human high molecular weight neurofilament protein (NF-H) resulted in the identification of 21 peptides and their modified residues and hence, the in vivo phosphorylation sites. These included 26 KSP and 1 KTP site, all of which occur in the KSP repeat C-terminal tail domain (residues 502-823). One site at residue 518 was previously uncharacterized. A novel non-KSP serine at residue 421 near the KLLEGEE region in a IPFSLPE motif was characterized as phosphorylated (or glycosylated). The 27 characterized phosphorylation sites occur at S/TP residues in the following motifs: KSPVKEE, KSPAEAK, KSPEKEE, KSPAEVK, KSPEKAK, KSPPEAK, KSPVKAE, and KTPAKEE. On the basis of kinase consensus sequences, all of these motifs, including the previously unreported KTPAKEE motif, can be phosphorylated by proline-directed kinases. Advantages of the new method vis-a-vis our previously reported method [Jaffe, H., Veeranna, Shetty, K. T., and Pant, H. C. (1998) Biochemistry 37, 3931-3940] include (i) production of diastereomers eluting at different retention times increased the chances of peptide identification, (ii) increased hydrophobicity and hence retention time of the modified peptides, (iii) facilitation of positive ion production, and (iv) increased susceptibility to tryptic digestion as a result of conversion of negatively charged phosphorylated residues to neutral S-ethylcysteine or beta-methyl-S-ethylcysteine residues.  相似文献   

5.
Exposure of individual purified neurofilament (NF) proteins to AlCl3 alters their electrophoretic properties in a time- and concentration-dependent manner, as visualized by their failure to migrate into SDS gels. Co-incubation of purified high (NF-H) and middle (NF-M) but not low (NF-L) molecular weight NF subunits prevents this AlCl3-induced alteration in electrophoretic migration. This latter finding suggested that specific interactions between NF-H and NF-M other than filament formation influenced their interaction with AlCl3. Co-incubation of the 160 kDa alpha-chymotryptic cleavage product of NF-H (corresponding to the highly phosphorylated C-terminal sidearm domain) with native NF-M prevented alteration in subunit electrophoretic migration by AlCl3. By contrast, intact, dephosphorylated NF-H subunits were unable to prevent AlCl3-induced alteration of native NF-M electrophoretic migration. Taken together, these findings suggest that phosphate-dependent interactions between the sidearm extensions of NF-H and NF-M diminish the ability of AlCl3 to associate with either subunit in a manner that alters their electrophoretic migration. This interaction of NF-H and NF-M sidearms is SDS-sensitive, while AlCl3-induced alteration in electrophoretic migration of individual subunits is SDS-resistant. Addition of SDS to mixtures of NF-H and NF-M subunits disrupted the protective effect, and promoted AlCl3-induced alterations in subunit electrophoretic migration. These findings support and extend the current hypothesis that the ability of aluminum to interact with NF subunits is a function of subunit phosphorylation, assembly, and extent of neurofilament-neurofilament cross-linking.  相似文献   

6.
7.
Neurofilaments, the neuron-specific intermediate filaments, are composed of three immunochemically distinct subunits: NF-L, NF-M and NF-H that can be either phosphorylated or unphosphorylated. In mammals, the distribution of these subunits has been described in vestibular ganglion neurons, but there are no reports on the presence of neurofilaments in vestibular hair cells. We investigated, by immunocytochemistry, neurofilaments in vestibular hair cells from rat and guinea-pig using antibodies against the three subunits and to dephosphorylated NF-H (clone SMI 32, recognizes also NF-M on immunoblots), on Vibratome sections of the vestibular end-organs and on isolated hair cells. Various immunostaining protocols were used, as appropriate for the method of observation: laser scanning confocal microscopy (immunofluorescence) and transmission electron microscopy (immunoperoxidase, pre-embedding technique). In rat and guinea-pig cristae and utricles, neurofilament immunoreactivity was observed in axons inside and below the sensory epithelia. In guinea-pig, in addition to this staining, intensely immunoreactive annular structures were found in the basal regions of hair cells. These rings were detected with anti-NF-L, -NF-M and -dephosphorylated NF-H/M antibodies, but not with anti-phosphorylation-independent NF-H. Ring-containing hair cells were present in all regions of the sensory epithelia but were more abundant in the peripheral areas. All levels of observation (Vibratome and thin sections, and isolated hair cells) showed that only the guinea-pig type I hair cells contained a neurofilament ring. High-resolution observations showed that the ring was located below the nucleus, often close to smooth endoplasmic reticulum and the cell membrane.  相似文献   

8.
To investigate the role of the neurofilament heavy (NF-H) subunit in neuronal function, we generated mice bearing a targeted disruption of the gene coding for the NF-H subunit. Surprisingly, the lack of NF-H subunits had little effect on axonal calibers and electron microscopy revealed no significant changes in the number and packing density of neurofilaments made up of only the neurofilament light (NF-L) and neurofilament medium (NF-M) subunits. However, our analysis of NF-H knockout mice revealed an approximately 2.4-fold increase of microtubule density in their large ventral root axons. This finding was further corroborated by a corresponding increase in the ratio of assembled tubulin to NF-L protein in insoluble cytoskeletal preparations from the sciatic nerve. Axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed an increased transport velocity of newly synthesized NF-L and NF-M proteins in motor axons of NF-H knockout mice. When treated with beta,beta'-iminodipropionitrile (IDPN), a neurotoxin that segregates microtubules and retards neurofilament transport, mice heterozygous or homozygous for the NF-H null mutation did not develop neurofilamentous swellings in motor neurons, unlike normal mouse littermates. These results indicate that the NF-H subunit is a key mediator of IDPN-induced axonopathy.  相似文献   

9.
10.
Following section of the optic nerve, degenerating retinal terminals reveal an accumulation of neurofilaments (neurofilamentous hypertrophy) as demonstrated by silver impregnation techniques or electron microscopy. The present study examined degenerating retinal terminals by means of immunohistochemistry and antibodies specific for the triplet of neurofilament proteins of low (NF-L), medium (NF-M), and high (NF-H) molecular weight class. Following unilateral optic nerve section in the rat and survival of 1, 2, 4, 8, and 21 days, brains were perfused with aldehyde fixative, sliced on a vibratome and stained for neurofilaments by using the peroxidase-antiperoxidase technique. Other brains were frozen, cut in the native state, and slide-mounted sections were fixed by acetone. Side comparisons in visual pathways were made in frontal sections, taking advantage of the near complete crossing of retinal fibers in the rat. Anterograde degeneration of axons occurred in the optic tract and branchium colliculi. Changes of terminals were investigated in the olivary pretectal nucleus, which contains a dense aggregation of retinal terminals in the core region. The optic tract and branchium colliculi showed a reduction in immunostaining for neurofilament proteins following axotomy. Within the core region of the olivary pretectal nucleus, strong increases of immunoreactivity of NF-L and NF-M were detected beginning at 2 days postlesion and persisting at 8 days. No changes in NF-H proteins were found in the terminal regions with three different antibody probes. The increase in immunostaining reflects the accumulation of neurofilament proteins in the degenerating retinal terminals, i.e., neurofilamentous hypertrophy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Prevertebral sympathetic ganglia develop markedly enlarged argyrophilic neurites as a function of age, gender and diabetes. Immunolocalization studies demonstrate their preferential labeling with antisera to highly phosphorylated 200 kDa neurofilament (NF-H) epitopes, NPY, peripherin and synapsin I, but not to hypophosphorylated NF-M and NF-H or MAP-2. The immunophenotype of dystrophic neurites in conjunction with the results of histochemical and ultrastructural studies are consistent with the terminal axonal and/or synaptic origin of neuritic dystrophy in the sympathetic ganglia of aged and diabetic human subjects.  相似文献   

12.
To investigate the role of phosphorylation in the turnover and transport of neurofilament (NF) proteins in vivo, we studied their solubility properties and axonal transport in the rat sciatic nerve using phosphatase inhibitors to minimize dephosphorylation during preparation. About 20% of the 200-kDa subunit (NF-H) in the axon was soluble in the 1% Triton-containing buffer under the present conditions, whereas this amount was less and more variable in the absence of phosphatase inhibitors. The 68-kDa subunit (NF-L) was exclusively insoluble and not affected by the inhibitors. Such selective solubilization of NF-H by phosphorylation differed significantly from the in vitro phosphorylation with cyclic AMP-dependent protein kinase, which resulted in NF disassembly. The carboxy-terminal phosphorylation state of NF-H probed with the phosphorylation-sensitive antibodies was also not directly related to solubility. The solubility of NF-H did not differ along the nerve. In contrast, the solubility of L-[35S]methionine-labeled, transported NF-H was lowest at the peak of radioactivity. Higher solubility at the leading edge, regardless of its location along the nerve, indicates that NF-H solubility is positively correlated with the rate of NF transport.  相似文献   

13.
The abnormal assembly and accumulation of neurofilaments (NF) in the perikarya and proximal axons of motor neurones is a characteristic of ALS. Deletions in the KSP repeat region of the NF-H gene have previously been reported in seven patients with sporadic ALS. Here we report the identification of a novel 84 bp insertion in the NF-H gene. This leads to an extra four KSP repeat elements in a highly conserved repetitive region of the gene. Although neurofilament mutations are only associated with a very small proportion of ALS cases, this insertion provides further support of a role for neurofilaments in the pathogenesis of ALS.  相似文献   

14.
We have characterized some of the nerve growth factor (NGF) stimulated receptor tyrosine kinase (TrkA) signalling cascades in adult rat primary dorsal root ganglia (DRG) neuronal cultures and compared the pathways with those found in PC12 cells. TrkA receptors were phosphorylated on tyrosine residues in response to NGF in DRG neuronal cultures. We also saw phosphorylation of phospholipase Cgamma1 (PLCgamma1). We used recombinant glutathione-S-transferase (GST)-PLCgamma1 SH2 domain fusion proteins to study the site of interaction of TrkA receptors with PLCgamma1. TrkA receptors derived from DRG neuronal cultures bound preferentially to the amino terminal Src homology-2 (SH2) domain of PLCgamma1, but there was enhanced binding with tandemly expressed amino- and carboxy-terminal SH2 domains. The most significant difference in NGF signalling between PC12 cells and DRG was with the Shc family of adapter proteins. Both ShcA and ShcC were expressed in DRG neurons but only ShcA was detected in PC12 cells. Different isoforms of ShcA were phosphorylated in response to NGF in DRG and PC12 cells. NGF phosphorylated only one whereas epidermal growth factor phosphorylated both isoforms of ShcC in DRG cultures. Activation of the downstream mitogen-activated protein (MAP) kinase, p42Erk2 was significantly greater than p44Erk1 in DRG whereas both isoforms were activated in PC12 cells. Blocking the MAP kinase cascade using a MEK1/2 inhibitor, PD98059, abrogated NGF dependent capsaicin sensitivity, a nociceptive property specific to sensory neurons.  相似文献   

15.
Adult rat chromaffin cells may proliferate or extend neurites when stimulated by nerve growth factor (NGF) but their response is predominantly proliferative, making them a unique model for studying how mitogenic specificity is achieved. We examined contributions of the NGF receptors trk and p75 and of the major NGF signaling pathways to proliferation versus neurite outgrowth. The type of initial NGF response does not correlate with intensity of immunoreactivity for trk or p75. However, proliferation is initiated at lower NGF concentrations than neurite outgrowth, suggesting that it requires a less intense signal. Mitogenic cooperativity between receptors at low NGF concentrations is suggested by inhibitory effects of p75-blocking antibodies, but responses to trk-agonist antibody indicate that trk activation alone can induce proliferation. NGF-induced phosphorylation of ras-mediated mitogen-activated protein kinases (MAPK) Erk1 and Erk2 is as prolonged in normal chromaffin cells as in PC12 cells, where NGF is neuritogenic. Trk-agonist antibody, which is as mitogenic as NGF but less neuritogenic, causes equally prolonged but less intense ERK phosphorylation. The MAPK kinase(MEK-1) inhibitor PD98059 partially inhibits Erk phosphorylation and does not inhibit chromaffin cell proliferation, while depolarization selectively inhibits proliferation without blocking Erk phosphorylation. Proliferation is markedly reduced by the phosphoinositol-3 (PI-3) kinase inhibitor LY294002 while downregulation of protein kinase C (PKC) causes no change. These findings suggest that low-level, rather than short-duration, stimulation of NGF signaling pathways causes NGF to be mitogenic. Ras-mediated MAPK activation may be more critical in neurite outgrowth than in proliferation and PI-3 kinase may be the major mitogenic determinant.  相似文献   

16.
Neurofilaments are organised into parallel bundles in axons through crossbridges formed by lateral projections of neurofilament subunits. Pure neurofilaments form gels in vitro, consisting of interconnected parallel arrays of filaments regulated by the phosphorylation level of neurofilament subunits. Neurofilament-associated polypeptides sharing phosphorylated epitopes with the repetitive lysine-serine-proline (Lys-Ser-Pro) motifs of the neurofilament heavy subunit sidearm are characterised: they regulate in vitro the neurofilament gelation kinetics in a concentration- and phosphorylation-dependent manner. Studies with synthetic peptides show that interactions between neurofilaments involve both acid and base amino acid residues of neurofilament sidearms and demonstrate the opposite effects of peptides containing either one (inhibition) or two (activation) Lys-Ser-Pro motifs. Electron microscopy reveals an organised network of native neurofilament sidearms, regulated by the phosphorylation level of neurofilament subunits, suggesting a structural transition between intra- and inter-neurofilament sidearm interactions. These results favour the hypothesis of a mechanism of neurofilament crossbridging through the variable antiparallel overlapping of the phosphorylable Lys-Ser-Pro domains of neurofilament sidearms from adjacent filaments, following an equilibrium regulated by neurofilament-associated proteins, bivalent cations and the phosphorylation level of Lys-Ser-Pro motifs from both neurofilament sidearms and neurofilament-associated proteins.  相似文献   

17.
Raf-1 is a serine/threonine kinase which is essential in cell growth and differentiation. Tyrosine kinase oncogenes and receptors and p21ras can activate Raf-1, and recent studies have suggested that Raf-1 functions upstream of MEK (MAP/ERK kinase), which phosphorylates and activates ERK. To determine whether or not Raf-1 directly activates MEK, we developed an in vitro assay with purified recombinant proteins. Epitope-tagged versions of Raf-1 and MEK and kinase-inactive mutants of each protein were expressed in Sf9 cells, and ERK1 was purified as a glutathione S-transferase fusion protein from bacteria. Raf-1 purified from Sf9 cells which had been coinfected with v-src or v-ras was able to phosphorylate kinase-active and kinase-inactive MEK. A kinase-inactive version of Raf-1 purified from cells that had been coinfected with v-src or v-ras was not able to phosphorylate MEK. Raf-1 phosphorylation of MEK activated it, as judged by its ability to stimulate the phosphorylation of myelin basic protein by glutathione S-transferase-ERK1. We conclude that MEK is a direct substrate of Raf-1 and that the activation of MEK by Raf-1 is due to phosphorylation by Raf-1, which is sufficient for MEK activation. We also tested the ability of protein kinase C to activate Raf-1 and found that, although protein kinase C phosphorylation of Raf-1 was able to stimulate its autokinase activity, it did not stimulate its ability to phosphorylate MEK.  相似文献   

18.
19.
The cytoplasmic domain of the syndecan family of heparan sulfate proteoglycans is punctuated by the presence of four regularly spaced tyrosine residues. In this report, we explore the possibility of whether the four tyrosine residues in the cytoplasmic domain of N-syndecan (Syndecan 3) are potential substrates for phosphorylation by a tyrosine kinase. Bacterially expressed elk kinase was used to phosphorylate a series of bacterially expressed N-syndecan fusion proteins. Our results clearly demonstrate that the tyrosine residues in the cytoplasmic domain of N-syndecan can be phosphorylated by a tyrosine-specific kinase, and that all four tyrosine residues are capable of being phosphorylated.  相似文献   

20.
The Kaposi's sarcoma-associated human herpesvirus 8 (KSHV/HHV8) encodes a protein similar to cellular cyclins. This cyclin is most closely related to cellular D-type cyclins, but biochemically it behaves atypically in various respects. Complexes formed between the viral cyclin and the cyclin-dependent kinase subunit, cdk6, can phosphorylate a wider range of substrates and are resistant to cdk inhibitory proteins. We show here that the KSHV-cyclin-cdk6 complex phosphorylates p27(Kip) on a C-terminal threonine that is implicated in destabilization of this cdk inhibitor. Expression of the viral cyclin in tissue culture cells overcomes a cell cycle block by p27(Kip). However, full cell-cycle transit of these cells appears to depend on C-terminal phosphorylation of p27(Kip) and seems to involve transactivation of other cellular cyclin-dependent kinases. A p27(Kip)-phosphorylating cdk6 complex exists in cell lines derived from primary effusion lymphoma and in Kaposi's sarcoma, this indicating that virally induced p27(Kip) degradation may occur in KSHV-associated tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号