首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrotalcite was synthesized by co-precipitation using metal nitrate precursor and potassium carbonate with Mg:Al ratio of 3:1. The samples were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) and nitrogen adsorption/desorption. The surface morphology and chemical composition were characterized by scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Characterization of hydrotalcite reveals that hydrotalcite prepared in this work exhibited a type II isotherm which is typical of mesoporous and slit shape pore materials. The hydrotalcite structures demonstrated higher degree of crystallinity when thermally treated at 700 °C. Carbon dioxide adsorption was conducted using adsorption unit and the result showed an increase of CO2 adsorption when hydrotalcite was coated on commercial zeolites.  相似文献   

2.
The separation of carbon dioxide from light hydrocarbons is a vital step in multiple industrial processes that could be achieved by pressure swing adsorption (PSA), if appropriate adsorbents could be identified. To compare candidate PSA adsorbents, carbon dioxide, methane, and ethane adsorption isotherms were measured for cation exchanged forms of the titanosilicate molecular sieves ETS-10, ETS-4, and RPZ. Mixed cation forms, such as Ba/H-ETS-10, may offer appropriate stability, selectivity, and swing capacity to be utilized as adsorbents in CO2/CH4 PSA processes. Certain cation exchanged forms of ETS-4 were found to partially or completely exclude ethane by size, and equivalent RPZ materials were observed to exclude both methane and ethane, while allowing carbon dioxide to be substantially adsorbed. Adsorbents such as Ca/H-ETS-4 and Ca/H-RPZ are strong candidates for use in PSA separation processes for both CO2/C2H6 and CO2/CH4, potentially replacing current amine scrubber systems.  相似文献   

3.
4.
This study takes place in the context of the use of a Synthesis Gas in Gas To Liquid process, liquid hydrocarbon production by conversion based on Fischer–Tropsch synthesis. Our aim is the process improvement by a selective recycling of the tail gas. So, we measure pure component isotherms for four gases (CO2, CH4, CO, N2) of the tail gas until 2000 kPa and binary mixture (CO2–CH4; CO2–N2; CH4–N2) equilibria at 303.15 K and 400 and 950 kPa onto a ZSM-5 zeolite. We also predict the binary mixture equilibria by the Ideal Adsorbed Solution Theory (IAST) and the Vacancy Solution Model (VSM, Flory–Huggins and Wilson forms) and we obtain very good results. So not only binary mixture equilibria but also ternary and quaternary mixture adsorption can be predicted. With these data (experimental and simulated), we can conclude that the CO2 is the most adsorbed component while N2 is the least one. These two components can be separated from CH4 and CO which are sent in the Synthesis Gas production step.  相似文献   

5.
As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (BT) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores.  相似文献   

6.
S.W Rutherford  J.E Coons 《Carbon》2003,41(3):405-411
The sorption equilibrium isotherm of carbon dioxide at 20 °C on a commercially manufactured carbon molecular sieve has been measured with a variable volume (vacuum to high pressure) volumetric adsorption apparatus. Measurement was taken over the pressure range <10-2000 Torr and the isotherm is characterized by Dubinin-Radushkevich analysis which provides the micropore size distribution. The equilibrium information is subsequently employed to characterize the dynamics of adsorption and it is shown that the uptake of carbon dioxide is Fickian with some deviation from Fickian behavior noted at lower pressures. The derived mobility parameter agrees reasonably well with that predicted by the Darken relation over more than a 200-fold change in pressure.  相似文献   

7.
Success of adsorbed natural gas (ANG) storage process is mainly based on the characteristics of the adsorbent, so various synthesized adsorbents were analyzed for methane adsorption on a thermodynamic basis. Activated carbon from rice husk (AC-RH) was synthesized and its methane adsorption capacities were compared with phenol based activated carbons (AC-PH2O and AC-PKOH). The adsorption experiments were conducted by volumetric method under various constant temperatures (293.15, 303.15, 313.15 and 323.15 K) and pressure up to 3.5MPa. Maximum methane adsorption was observed in AC-RH as its surface area is higher than the other two adsorbents. The experimental data were correlated well with Langmuir-Fruendlich isotherms. In addition, isosteric heat of adsorption was calculated by using Clausius-Clapeyron equation.  相似文献   

8.
The effect of carbon dioxide partial pressure and fluidization velocity on activated carbons produced by carbon dioxide activation of scrap car tyre rubber in a fluidized bed has been studied. The method consisted of carbonization at under nitrogen followed by activation at . Three types of activated carbons were produced using activated gas concentrations of 20, 60 and 100% carbon dioxide by volume, the rest nitrogen, at a constant fluidization velocity (0.0393 m/s) to investigate the influence of carbon dioxide partial pressure. Within the experimental setup and activation time of 4 h, it was observed that BET surface area and total pore volume increased with carbon dioxide partial pressure reaching and , respectively, for 100% activation with carbon dioxide. Three other types of activated carbons were produced using 100% carbon dioxide at two (0.0393 m/s), three (0.0589 m/s) and four (0.0786 m/s) times the minimum fluidization velocity (Umf). The BET surface area and total pore volume were observed to increase with fluidization velocity (which can be viewed as an indicator of the intensity of mixing in the bed), reaching and , respectively, at four times the minimum fluidization velocity.  相似文献   

9.
以石墨片微元构建的多孔碳材料作为活性炭的结构模型,采用巨正则蒙特卡罗方法(GCMC)和分子动力学方法(MD),从分子层面研究甲烷和甲苯在活性炭中的吸附和扩散特性. 结果表明,石墨片微元大小对多孔碳材料吸附甲烷和甲苯有一定影响,37个碳环构成的多孔碳材料是最佳的吸附结构;甲烷气体在活性炭材料中扩散较快,甲苯在活性炭中扩散较慢,随碳环碳原子数增加,气体在多孔碳材料中的自扩散系数逐渐增大;引入基团会使最优密度向高密度方向偏移,用不同基团表面改性的吸附量顺序为羟基>氨基>羧基>未改性,基团引入会改善材料的孔结构,有利于吸附量的增加.  相似文献   

10.
Industrial zeolitic membranes which offer a remarkable selectivity compared to polymeric membranes, suffer of the lower flux due of their larger thickness (e.g., 10–30 μm). This problem can be addressed by controlled synthesis of nanolayers, resulting in thinner membrane layers (e.g., 0.5–5 μm). An aluminosilicate gel with a molar composition of 20SiO2:Al2O3:10K2O:400H2O was used to prepare several membranes of zeolite L by means of a controlled hydrothermal synthesis on the surface of a porous alumina disc seeded with nanozeolite LTL crystals. Nanocrystallites of LTL zeolite with an average particle size of 80–100 nm were successfully synthesized and characterized. Using these nanoparticles as seeds, a zeolite L layer with an average thickness of 2 μm was synthesized on the alumina support at 150 °C.  相似文献   

11.
Ashleigh J. Fletcher 《Carbon》2006,44(5):989-1004
Adsorption dynamics are of fundamental importance in applications of adsorbents in real situations. The adsorption/desorption characteristics of a series of adsorbates, with varying hydrophilic/hydrophobic and structural characteristics, for activated carbon BAX950, were investigated for temperatures in the range 288-323 K. These data provide a comprehensive kinetic study of adsorption/desorption for an activated carbon. The results are discussed in relation to the adsorbent pore structure and functional group concentration, adsorptive structure and adsorption mechanism. The study provides evidence for a compensation effect where activation energy and ln(pre-exponential factor) parameters obtained from the Arrhenius equation exhibit a linear correlation.  相似文献   

12.
We have carried out non-equilibrium molecular dynamics simulations of gas separation in a “selective surface flow” membrane. The gas mixture studied is hydrogen/methane, which is relevant to hydrogen purification in refineries. The simulations give insight into the separation mechanism, which is based on the transport of the more strongly adsorbing species (methane) in a dense layer near the pore wall, with the less strongly adsorbed species (hydrogen) diffusing through a less dense region close to the centre of the pore. Good agreement is obtained with experimental selectivity data. This work is also relevant to the study of the combined effects of adsorption and diffusion in microporous carbon adsorbents.  相似文献   

13.
Results from a single grain activated carbon adsorption study indicate that the effective diffusion coefficient was from 0.65×10−6 to 7.4×10−6 cm2/s for H2S in the concentration range of 20–300 ppmv at 23 °C for both virgin activated carbon (FAC) and impregnated-regenerative activated carbon (IRAC). The effective diffusivity of the IRAC was nearly two times the FAC for H2S adsorption. The surface reaction of H2S-impregnated regenerative activated carbon was faster than that of H2S and virgin activated carbon. The single grain activated carbon kinetic curve and a time scale conversion method were used to predict the breakthrough curve and the adsorption capacity of the column adsorption system. The single grain activated carbon adsorption system measured the breakthrough curve more efficiently than column adsorption. The prediction error was between 10 and 30%. Improvement can be further achieved by enhanced experimental approaches. It has a great potential for scale-up.  相似文献   

14.
The separation of binary mixture representatives of natural and landfill gases by selective adsorption using adsorbent porous clay heterostructures has been investigated. Using Wyoming clay as a starting material, the solids are prepared by the gallery-templated approach from the polymerization of two silica sources, tetraethoxysilane (TEOS) and phenyltriethoxysilane (PhOS), at several molar ratios. In this way, the surface chemistry and the porosity characteristics of the samples are modified. The adsorbents presented specific surface areas up to 634 m2 g−1, micropore-size distributions with maxima near to 0.6 nm, thermal stability up to 400 °C and also hydrophobic characteristics. The selectivity for the separation of various binary mixtures such as CO2/CH4, CO2/C2H6 and C2H6/CH4, estimated by a methodology based on the determination of the Gibbs free energy, is discussed.  相似文献   

15.
In this study a heat-treatment process using an activated carbon and coal-tar pitch was developed to prepare carbon molecular sieves (CMSs) for CH4/CO2 separation. This process results in a partial blockage of the pores of the activated carbon precursor, so that a reduction in the pore size takes place. Equilibrium CO2 adsorption measurements at different temperatures, and CO2 and CH4 kinetic measurements at different temperatures and feed pressures were carried out using the TEOM technique for a carbon molecular sieve (CMS) prepared by this process (sample CB3) and a commercial CMS (Takeda 3A, sampleT3A). The overall diffusion for CO2 in sample CB3 was faster than that in T3A and a slightly higher CO2 adsorption capacity of CB3 was obtained. The transient uptake profiles in both samples at different temperatures and different CO2 partial pressures were described in some cases by a micropore diffusion model, and in other cases by a dual resistance model. Both equilibrium and kinetic results demonstrate a better CO2/CH4 separation performance for the CMS prepared in the present study (CB3) than for the commercial CMS (Takeda 3A), due to the existence of slightly wider pore-mouth openings in sample CB3. This study demonstrates that the process used in this work is an interesting and reproducible approach to prepare CMS for CO2/CH4 separation.  相似文献   

16.
Dapeng Cao 《Carbon》2005,43(7):1364-1370
Grand canonical Monte Carlo simulations (GCMC) are carried out to investigate the separation of hydrogen and carbon dioxide via adsorption in activated carbons. In the simulations, both hydrogen and carbon dioxide molecules are modeled as Lennard-Jones spheres, and the activated carbons are represented by a slit-pore model. At elevated temperatures (T = 505 and 923 K), the activated carbons exhibit essentially no preference over the two gases and the selectivity of carbon dioxide relative to hydrogen falls monotonically as the pore size increases. At room temperature, however, the selectivity of carbon dioxide relative to hydrogen reaches up to 90, indicating that hydrogen and carbon dioxide can be efficiently separated. Furthermore, the optimized pore sizes, of width H = 1.48 nm for the bulk mole fraction ratio of xCO2/xH2=1:2 and H = 1.18 nm for xCO2/xH2=1:8, are identified in which the activated carbons show the highest selectivity for the separation of hydrogen and carbon dioxide.  相似文献   

17.
采用硝酸和尿素联合对活性炭进行改性,制备了富含氮元素的氮掺杂活性炭,考察了孔结构、氮含量和氮种类(吡啶氮、吡咯氮和石墨氮)对CH4-CO2重整反应催化性能的影响。采用BET、SEM、EA、FTIR、XPS、CO2-TPD和TG表征手段对反应前后催化剂的物理化学性质进行了表征,对引入活性炭表面的含氮官能团的种类及其在重整过程中所起的作用进行了分析。相比于未改性的原活性炭,硝酸和尿素同时改性制备的氮掺杂活性炭(AC-U.NA)引入了更多的羟基官能团和含氮官能团。特别是通过两者共同改性后,所制备的氮掺杂活性炭引入的吡啶氮官能团比例明显提高,为CH4-CO2重整反应提供了更多的活性位点,初始CH4和CO2转化率达到55.94%和66.46%。同时经过两者联合改性后,所制备的AC-U.NA材料表面具有极性,不仅有利于酸性CO2分子的吸附和活化,而且有利于CO2消碳反应,减少了积炭的生成,对所制备的非金属重整催化剂的活性和抗积炭性具有重要的意义。  相似文献   

18.
Removing impurities such as carbon dioxide and nitrogen from natural gas is a technical challenge and one of the major concerns in natural gas treatment process. In this study, adsorption of CH4, N2, and CO2 on the Faujasite(FAU) zeolite has been studied using molecular dynamics simulation at temperatures of 293, 308, and 323 K and pressures up to 1 MPa. COMPASS force field was used to model the interactions between zeolite and guest molecules. Ewald and atom-bas...  相似文献   

19.
20.
Gas adsorption was measured for methane, nitrogen, CO2 and their binary and ternary mixtures on a wet Tiffany coal sample. The measurements were conducted at 327.6 K (130.0 F) at pressures to 13.8 MPa (2000 psia). The expected uncertainties in the amounts adsorbed vary with pressure and composition. In general, average uncertainties are about 5% (0.01–0.08 mmol/g) for the total adsorption; however, the expected percentage uncertainties in the amount of individual-component adsorption are significantly higher for the lesser-adsorbed gas at lower molar feed concentrations (e.g. nitrogen in the 20/80 nitrogen/CO2 system).

The Langmuir/loading ratio correlation (LRC) and the Zhou–Gasem–Robinson (ZGR) two-dimensional equation of state (EOS) are capable of representing the total adsorption for the pure, binary and ternary systems within their expected experimental uncertainties. However, the quality of fit for the individual-component adsorption varies significantly, ranging from 3% (0.01 mmol/g) for the more-adsorbed methane or CO2 to 32% (0.01 mmol/g) for the lesser-adsorbed nitrogen. Further, the LRC and ZGR EOS predict binary adsorption isotherms, based solely on pure-fluid adsorption parameters, within twice their experimental uncertainties.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号