首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
This paper documents experiments and CFD simulations of the hydrodynamics of our two-phase (water, air) laboratory internal loop airlift reactor (40 l). The experiments and simulations were aimed at obtaining global flow characteristics (gas holdup and liquid interstitial velocity in the riser and in the downcomer) in our particular airlift configurations. The experiments and simulations were done for three different riser tubes with variable length and diameter. Gas (air) superficial velocities in riser were in range from 1 to 7.5 cm/s. Up to three circulation regimes were experimentally observed (no bubbles in downcomer, bubbles in downcomer but not circulating, and finally the circulating regime). The primary goal was to test our CFD simulation setup using only standard closures for interphase forces and turbulence, and assuming constant bubble size is able to capture global characteristics of the flow for our experimental airlift configurations for the three circulation regimes, and if the simulation setup could be later used for obtaining the global characteristic for modified geometries of our original airlift design or for different fluids. The CFD simulations were done in commercial code Fluent 6.3 using algebraic slip mixture multiphase model. The secondary goal was to test the sensitivity of the simulation results to different closures for the drag coefficient and the resulting bubble slip velocity and also for the turbulence. In addition to the simulations done in Fluent, simulation results using different code (CFX 12.1) and different model (full Euler–Euler) are also presented in this paper. The experimental measurements of liquid interstitial velocity in the riser and in the downcomer were done by evaluating the response to the injection of a sulphuric acid solution measured with pH probes. The gas holdup in the riser and downcomer was measured with the U-tube manometer. The results showed that the simulation setup works quite well when there are no bubbles present in the downcomer, and that the sensitivity to the drag closure is rather low in this case. The agreement was getting worse with the increase of gas holdup in the downcomer. The use of different multiphase model in the different code (CFX) gave almost the same results as the Fluent simulations.  相似文献   

2.
A three-dimensional simulation of a dilute phase riser reactor (solid mass flux: ) is performed using a novel density based solution algorithm. The model equations consisting of continuity, momentum, energy and species balances for both phases, are formulated following the Eulerian-Eulerian approach. The kinetic theory of granular flow is applied. The gas phase turbulence is accounted for via a k-ε model. An extra transport equation describes the correlation between the gas and solid phase fluctuating motion. The solution algorithm allows a simultaneous integration of all the model equations in contrast to the sequential multi-loop solution in the conventional pressure based algorithms, used so far in riser simulations. The simulations show an unsteady behaviour of the flow, but a core-annulus flow pattern emerges on a time-averaged basis. The abrupt nature of the T type outlets causes a significant recirculation of gas and solid from the top of the riser. The flow near the outlets is highly non-symmetric and has a three-dimensional character. A significant decrease of the gas phase turbulence and particle granular temperature across the riser length is attributed to the presence of small particles, which is qualitatively consistent with the experimental data from literature.  相似文献   

3.
This study presents a computational investigation of the hydrodynamics and kinetic reactions in a fluidised-bed MTO reactor. By integrating a kinetic model of methanol conversion with a two-fluid flow model, a gas–solid flow and reaction model was established. CFD analyses were performed, and the influences of various operating parameters were evaluated. The results indicate that the velocity, volume fraction and species concentration were considerably non-uniform in the axial and radial directions of the MTO reactor. Methanol conversion rate and product yields were more sensitive to the reaction temperature and pressure than to the initial methanol content in the feedstock. A gas velocity of 2.5–3.0 m/s and a catalyst circulation rate of 100–120 kg/(m2 s) were found to be ideal for the current reactor. Coke deposition significantly affected the methanol conversion rate, product distribution and species selectivity. The ethylene-to-propylene ratio could be adjusted by varying the amount of coke on the catalyst.  相似文献   

4.
A computational fluid dynamic (CFD) study has been carried out for the fuel reactor for a new type of combustion technology called chemical-looping combustion (CLC). CLC involves combustion of fuels by heterogeneous chemical reactions with an oxygen carrier, usually a granular metal oxide, exchanged between two reactors. There have been extensive experimental studies on CLC, however CFD simulations of this concept are quite limited. In the present paper we have developed a CFD model for the fuel reactor of a chemical-looping combustor described in the literature, which utilized a Fe-based carrier (ilmenite) and coal. An Eulerian multiphase continuum model was used to describe both the gas and solid phases, with detailed sub-models to account for fluid–particle and particle–particle interaction forces. Global reaction models of fuel and carrier chemistry were utilized. The transient results obtained from the simulations were compared with detailed experimental time-varying outlet species concentrations (Leion et al., 2008) and provided a reasonable match with the reported experimental data.  相似文献   

5.
In the present work, a k1ε1k2k12 two-fluid model based on the kinetic theory of granular flow (KTGF) was employed to predict the flow behavior of gas and solids in downers, where the particles of small size as 70 μm in diameter apparently interact with the gas turbulence. The turbulence energy interaction between gas and solids was described by different k12 transport equations, while the particle dissipation by the large-scale gas turbulent motion was taken into account through a drift velocity. Johnson–Jackson boundary condition was adopted to describe the influence of the wall on the hydrodynamics. The simulation results by current CFD model were compared with the experimental data and simulation results reported by Cheng et al. (1999. Chem. Eng. Sci. 54, 2019) and Zhang and Zhu (1999. Chem. Eng. Sci. 54, 5461). Good agreement was obtained based on the PDE-type k12 transport equation. The results demonstrated that the proposed model could provide good physical understanding on the hydrodynamics of gas–solid multiphase flow in downers. Using the current model, the mechanism for formation and disappearance of the dense-ring flow structure and the scale-up characteristics of downers were discussed.  相似文献   

6.
A two-phase model is used to simulate spreading the introduction of reactant feed along the height of a fluidized bed reactor for oxidative dehydrogenation of ethane to ethylene. The reactor model is used to predict the reactor performance for different ethane-to-oxygen molar feed ratios, with premixed and non-premixed feed. The proposed model is used to simulate the premixed feed (without secondary injection), and for distributed feed with secondary injection at one, three and five injection levels above the primary distributor. Predictions from the model are shown to compare favourably with experimental data from an industrial pilot reactor of diameter 97 mm. A case study is then employed to explore a wider range of conditions than is possible experimentally. Oxidant distribution is shown to be beneficial in expanding the range of reactant compositions beyond those normally allowed by safety constraints. Distributing the feed over a number of levels improves the reactor performance, especially in reducing the selectivities of undesired by-products. Feeding gas at several levels is generally more promising than introducing feed at a single secondary injection level.  相似文献   

7.
The present work focuses on a numerical investigation of the solids residence time distribution(RTD)and the fluidized structure of a multi-compartment fluidized bed,in which the flow pattern is proved to be close to plug flow by using computational fluid dynamics(CFD)simulations.With the fluidizing gas velocity or the bed outlet height rising,the solids flow out of bed more quickly with a wider spread of residence time and a larger RTD variance(σ2).It is just the heterogeneous fluidized structure that being more prominent with the bed height increasing induces the widely non-uniform RTD.The division of the individual internal circulation into double ones improves the flow pattern to be close to plug flow.  相似文献   

8.
The hydrodynamics of a two-dimensional gas–solid fluidized bed reactor were studied experimentally and computationally. Computational fluid dynamics (CFD) simulation results from a commercial CFD software package, Fluent, were compared to those obtained by experiments conducted in a fluidized bed containing spherical glass beads of 250– in diameter. A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied in order to simulate the gas–solid flow. Momentum exchange coefficients were calculated using the Syamlal–O’Brien, Gidaspow, and Wen–Yu drag functions. The solid-phase kinetic energy fluctuation was characterized by varying the restitution coefficient values from 0.9 to 0.99. The modeling predictions compared reasonably well with experimental bed expansion ratio measurements and qualitative gas–solid flow patterns. Pressure drops predicted by the simulations were in relatively close agreement with experimental measurements at superficial gas velocities higher than the minimum fluidization velocity, Umf. Furthermore, the predicted instantaneous and time-average local voidage profiles showed similarities with the experimental results. Further experimental and modeling efforts are required in a comparable time and space resolutions for the validation of CFD models for fluidized bed reactors.  相似文献   

9.
A multifluid Eulerian computational fluid dynamics (CFD) model with granular flow extension is used to simulate a liquid-solid fluidized bed. The numerical simulations are evaluated qualitatively by experimental data from the literature and quantitatively by comparison with new experimental data. The effects of mesh size, time step and convergence criteria are investigated. Varying the coefficient of restitution did not alter the results significantly. The Gidaspow drag relationship predicted a higher voidage than the Wen and Yu drag law. Two different liquid distributors (uniform and non-uniform) were simulated and compared, but a better representation of the geometry of the distributor plate did not greatly influence the results. Qualitatively, the simulations show trends similar to experimental trends reported by various authors. The predictions are also compared with new experimental results for 1.13 mm glass spheres at a wide variety of superficial liquid velocities (0.0085-0.110 m/s) and two different temperatures (12 and ) significantly affecting the liquid viscosity. The CFD model predictions are within 5% of the steady-state experimental data and show the correct trend with variation in viscosity.  相似文献   

10.
The behaviour of a gas-solid flow in a bubbling fluidized bed operated near the minimum fluidization condition is strongly influenced by the frictional stresses between the particles, these being highly concentrated and their motion dominated by enduring contact among them and with the walls.The effect of the introduction of frictional stresses in a Eulerian-Eulerian two fluid model based on the kinetic theory of the granular flow is evaluated. The models of Johnson and Jackson [1987. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics 176, 67-93], Syamlal et al. [1993. Mfix documentation: volume I, theory guide. Technical Report DOE/METC-9411004, NTIS/DE9400087, National Technical Information Service, Springfield, VA], and Srivastava and Sundaresan [2003. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology 129, 72-85] are compared with the kinetic theory of the granular flow and with experimental data both in a bubbling fluidized bed with a central jet and in a bubbling fluidized bed with a porous distributor. The predicted evolution of the bubble diameter along the height of the fluidized beds is examined, the shapes of the bubbles predicted by the models are compared and the evolution in time of the bubbles is shown. In the case of the bed with a central jet, the bubble detachment time is also calculated. The results show that the introduction of a frictional stress model improves the prediction of the bubbles diameter in a bubbling fluidized bed with a central jet and positively affects the bubbles diameter distribution in a uniformly fed bubbling fluidized bed. The high sensitivity of the model to the value of the particulate phase fraction at which frictional stresses start to be accounted for is pointed out through a sensitivity analysis performed on the Srivastava and Sundaresan [2003. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology 129, 72-85] model.  相似文献   

11.
In this work, simulations have been performed for three phase stirred dispersions using computational fluid dynamics model (CFD). The effects of tank diameter, impeller diameter, impeller design, impeller location, impeller speed, particle size, solid loading and superficial gas velocity have been investigated over a wide range. The Eulerian multi-fluid model has been employed along with the standard k-ε turbulence model to simulate the gas-liquid, solid-liquid and gas-liquid-solid flows in a stirred tank. A multiple reference frame (MRF) approach was used to model the impeller rotation and for this purpose a commercial CFD code, FLUENT 6.2. Prior to the simulation of three phase dispersions, simulations were performed for the two extreme cases of gas-liquid and solid-liquid dispersions and the predictions have been compared with the experimental velocity and hold-up profiles. The three phase CFD predictions have been compared with the experimental data of Chapman et al. [1983. Particle-gas-liquid mixing in stirred vessels, part III: three phase mixing. Chemical Engineering Research and Design 60, 167-181], Rewatkar et al. [1991. Critical impeller speed for solid suspension in mechanical agitated three-phase reactors. 1. Experimental part. Industrial and Engineering Chemistry Research 30, 1770-1784] and Zhu and Wu [2002. Critical impeller speed for suspending solids in aerated agitation tanks. The Canadian Journal of Chemical Engineering 80, 1-6] to understand the distribution of solids over a wide range of solid loading (0.34-15 wt%), for different impeller designs (Rushton turbine (RT), pitched blade down and upflow turbines (PBT45)), solid particle sizes (120-) and for various superficial gas velocities (0-10 mm/s). It has been observed that the CFD model could well predict the critical impeller speed over these design and operating conditions.  相似文献   

12.
Simultaneous adsorption of SO2-NOx in a riser configuration is a novel route for flue gas cleaning. The riser operates at a low flux of small diameter Na-γ-Al2O3 sorbent particles. The reaction scheme is adopted from previous work (Ind. Eng. Chem. Res. 40 (2001) 119), without adjusting any of the kinetic parameters. The significant concentration gradient between the gas and solid phase mainly arises from the low solid fraction (typically 5×10−4) in the riser. Enhancing the fluctuating kinetic motion of gas and solid phase increases the SO2 adsorption, whereas the NO adsorption is decreased marginally. The solid recirculation in the top section of the riser, induced by the abrupt T outlets, significantly decreases the NO and NO2 removal, while the SO2 removal remains mostly unaffected. Therefore, it is desirable to avoid recirculation for a maximum NOx removal. A comparison of the 3D and a 1D model shows that higher SO2 and NO removal efficiencies are predicted by the 3D model in the major part of the riser. However, these positive effects are largely neutralized by the negative effects of the outlet-induced recirculation, resulting in similar overall removal efficiencies calculated by the two models. Unlike the 1D model, the 3D simulation shows a considerable axial variation in the solid fraction and slip velocity. The 3D simulation also allows to calculate the effects of outlet geometry on the flow and reaction fields. The reactor efficiency can be improved by modifying the outlet configuration to minimize the recirculation.  相似文献   

13.
Studies on voidage fluctuations, axial voidage profile and bed expansion are carried out by measuring the local void fraction using particles of wide ranging characteristics in liquid-solid inverse fluidized bed. The quality of fluidization is elucidated by the local voidage fluctuations. The RMS voidage fluctuation depicts a maximum with respect to average bed void fraction and increases with increase in Archimedes number. The fluidization quality has been quantified using average normalized RMS voidage fluctuation in terms of Transition number. The axial void fraction is almost uniform throughout the bed except for particles with size distribution. All the literature and present experimental data on bed expansion are unified in terms of Richardson and Zaki equation using experimental terminal velocities. A new correlation is proposed for predicting the wall effect corrected experimental terminal velocities, as a substitute for standard drag equation. The bed expansion data are also predicted using the drift flux model.  相似文献   

14.
Circulating fluidized bed adsorber (CFBA) technology is regarded as a potentially effective method for simultaneously controlling emissions of sulfur dioxide, fine particulate matter, and trace heavy metals, such as mercury vapor. In order to analyze CFBA systems in detail, a gas mixture/solids mixture model based on the three-dimensional Navier-Stokes equations is developed for particle flow, agglomeration, physical and chemical adsorption in a circulating fluidized bed. The solids mixture consists of two solids, one with components of CaO and CaSO4, and the other being an activated carbon. The gas mixture is composed of fine particulate matter (PM), sulfur dioxide, mercury vapor, oxygen and inert gas. Source terms representing fine particulate matter agglomeration onto sorbent particles, sulfur dioxide removal through chemical adsorption onto calcined lime, and mercury vapor removal through physical adsorption onto activated carbon are formulated and included into the model. The governing equations are solved using high-resolution upwind-differencing methods, combined with a time-derivative preconditioning method for efficient time-integration. Numerical simulations of bench-scale operation of a prototype CFBA reactor for multi-pollutant control are described.  相似文献   

15.
This paper presents a complete CFD modelling of a wastewater gas-liquid cross-flow reactor, taking into account hydrodynamics, mass transfer and biological reactions. Transfer processes, kinetics model and assumptions made are described in detail. The simulations have been successfully compared to experimental results obtained in a bench scale reactor. Chemical oxygen demand (COD), nitrate, ammonium and oxygen concentrations have been measured along the length of the reactor and compared to the simulated profiles. A very good agreement has been obtained for the COD and nitrate concentration profiles. Agreement for the oxygen concentration profile is reasonably good with respect to the experimental uncertainty. These results have been obtained without any adjustment of the kinetics parameters. The basics of a three-phase CFD model taking into account the transfer between flocs and wastewater, as well as the inhomogeneous concentration of biomass due to the hydrodynamics of the reactor, are proposed as perspectives.  相似文献   

16.
Recently, many novel reactor concepts based on membrane fluidized bed reactors have been proposed. In this work, the effects of gas permeation through flat membranes on the hydrodynamics in a pseudo-2D membrane-assisted gas–solid fluidized bed have been investigated experimentally. A combination of the non-invasive techniques (Particle Image Velocimetry (PIV) and Digital Image Analysis (DIA)) was employed to simultaneously investigate solids phase and bubble phase properties in great detail. Counter-intuitively, addition of secondary gas via the membranes, that constituted the confining walls of a gas–solid suspension at conditions close to incipient fluidization, did not result in a larger, but in a smaller equivalent bubble diameter, while gas extraction on the other hand, resulted in a larger equivalent bubble diameter, although in this case the effect was less pronounced. This could be explained by changes in the larger scale particle circulation patterns due to gas extraction and addition via the membranes.  相似文献   

17.
It is shown that gas sampling from fluidized beds can provide misleading information due to hydrodynamic factors, biased sampling from the dense phase and radial gradients. Caution is needed to avoid these problems and in the interpretation of gas-sampling data.  相似文献   

18.
Spout-fluid beds find a widespread application in the process industry for efficient contacting of large particles with a gas. However, detailed understanding of the complex behavior of these systems is lacking, which leads to significant scale-up problems in industry. In this paper we report results of a combined experimental and simulation study on the various regimes, which can be encountered during spout-fluid bed operation.A regime map for a 3D spout-fluid bed was composed employing spectral analysis of pressure drop fluctuations and fast video recordings. In addition 3D Euler-Lagrange computations were performed to assess the capability of the model to reproduce the experimentally observed flow regimes.The influence of the drag closure on the model results was assessed and the influence of the computational grid was studied using a new method for the implementation of the two-way coupling, which is proposed in this paper.For most regimes our model is able to predict the appropriate regime. The frequency, at which the largest power is found, is overpredicted by the model. Contrary to the experimental observations, our model did not predict any large slugs in the slugging bed regime.The remaining differences between the simulated and experimentally observed bed behavior is most likely related to the representation of the effective fluid-particle interaction in our model, which relies on local spatial homogeneity.  相似文献   

19.
In this work, the hydrodynamics and mass transfer in a gas–liquid dual turbine stirred tank reactor are investigated using multiphase computational fluid dynamics coupled with population balance method (CFD–PBM). A steady state method of multiple frame of reference (MFR) approach is used to model the impeller and tank regions. The population balance for bubbles is considered using both homogeneous and inhomogeneous polydispersed flow (MUSIG) equations to account for bubble size distribution due to breakup and coalescence of bubbles. The gas–liquid mass transfer is implemented simultaneously along with the hydrodynamic simulation and the mass transfer coefficient is obtained theoretically using the equation based on the various approaches like penetration theory, slip velocity, eddy cell model and rigid based model. The CFD model predictions of local hydrodynamic parameters such as gas holdup, Sauter mean bubble diameter and interfacial area as well as averaged quantities of hydrodynamic and mass transfer parameters for different mass transfer theoretical models are compared with the reported experimental data of [Alves et al., 2002a] and [Alves et al., 2002b] . The predicted hydrodynamic and mass transfer parameters are in reasonable agreement with the experimental data.  相似文献   

20.
Computational fluid dynamic (CFD) models must be thoroughly validated before they can be used with confidence for designing fluidized bed reactors. In this study, validation data were collected from a fluidized bed of (Geldart's group B) alumina particles operated at different gas velocities involving two fluidization hydrodynamic regimes (bubbling and slugging). The bed expansion, height of bed fluctuations and frequency of fluctuations were measured from videos of the fluidized bed. The Eulerian-Eulerian two fluid model MFIX was used to simulate the experiments. Two different models for the particle stresses—Schaeffer [Syamlal, M., Rogers, W., O’Brien, T.J., 1993. MFIX documentation: theory guide. Technical Report DOE/METC-94/1004 (DE9400087), Morgantown Energy Technology Centre, Morgantown, West Virginia (can be downloaded from Multiphase Flow with Interphase eXchanges (MFIX) website 〈http://www.mfix.org〉); Schaeffer, D.G., 1987. Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations 66, 61-74.] and Princeton [Srivastava, A., Sundaresan, S., 2003. Analysis of a frictional-kinetic model for gas-particle flow. Powder Technology 129(1-3), 72-85.] models—and different values of the restitution coefficient and internal angle of friction were evaluated. 3-D simulations are required for getting quantitative and qualitative agreement with experimental data. The results from the Princeton model are in better agreement with data than that from the Schaeffer model. Both free slip and Johnson-Jackson boundary conditions give nearly identical results. An increase in coefficient of restitution (e) from 0.8 to 1 leads to larger bed expansions and lower heights of fluctuations in the bubbling regime, whereas it leads to unchanged bed expansion and to a massive reduction in the height of fluctuations in the slugging regime. The angle of internal friction (φ) in the range 10-40° does not affect the bed expansion, but its reduction significantly reduces the height of fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号