首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
This work presents an investigation of CO2 absorption into aqueous blends of 2-amino-2-methyl-1-propanol (AMP) and monoethanolamine (MEA). The acid gas mass transfer has been modeled using equilibrium-mass transfer-kinetics-based combined model to describe CO2 absorption into the amine blends according to Higbie's penetration theory. The effect of contact time and relative amine concentration on the rate of absorption and enhancement factor were studied by absorption experiment in a wetted wall column at atmospheric pressure. The model was used to estimate the rate coefficient of the reaction between CO2 and monoethanolamine at 313 K from experimentally measured absorption rates. A rigorous parametric sensitivity test has been done to identify the key systems’ parameters and quantify their effects on the mass transfer using the mathematical model developed in this work. The model predictions have been found to be in good agreement with the experimental rates of absorption of CO2 into (AMP+MEA+H2O).  相似文献   

2.
In order to elucidate the dynamic performance of the CO2 ocean disposal process, effects of operating parameters, such as gas flow rate, salinity and temperature, on the absorption of CO2 into seawater were examined. The rate-based model consisting of the rates of chemical reaction and gas-liquid mass transfer was developed for simulating dynamic process of CO2 ocean disposal. In modeling, non-ideal mixing characteristics in the gas and liquid phases are described using a tanks-in-series model with backflow. Experiments were performed to verify dynamic CO2 absorption prediction capability of the proposed model in a cylindrical bubble column. The operation was batch and continuous with respect to liquid phase and gas phase, respectively. Experimental results indicate that the CO2 gas injection rate increased the absorption rate but the increase in salinity concentration caused inhibition of the absorption of CO2. The proposed model could describe the present experimental results for the dynamic changes and the steady-state values of dissolved CO2 concentration and hydrogen ion concentration. The proposed model might effectively handle the prediction of the absorption of CO2 into seawater in the CO2 ocean disposal.  相似文献   

3.
4.
Aqueous solutions of potassium glycinate were characterized for carbon dioxide absorption purposes. Density and viscosity of these solutions, with concentrations ranging from 0.1 to 3 M, were determined at temperatures from 293 to 313 K. Diffusivity of CO2 in solution was estimated applying the modified Stokes-Einstein relation. Solubilities of N2O at the same temperatures and concentrations were measured and the ion specific parameter based on Schumpe's model was determined for the glycinate anion; the solubilities of CO2 in these solutions were then computed.The reaction kinetics of CO2 in the aqueous solution of potassium glycinate was determined at 293, 298 and 303 K using a stirred cell reactor. The results were interpreted using the DeCoursey equation for the calculation of the enhancement factor. The rate of absorption as a function of the temperature and solution concentration for the conditions studied was found to be given by the following expression:
  相似文献   

5.
The absorption of CO2 into aqueous solution of 2-(1-piperazinyl)-ethylamine (PZEA) were studied at 303, 313, and 323 K within the amine concentration range of 0.083-1.226 kmol m−3 using a wetted wall column absorber. The experimental results were used to interpret the kinetics of the reaction of CO2 with PZEA within the amine concentration range of 0.150-1.226 kmol m−3 for the above mentioned temperature range. Based on the pseudo-first-order condition for the CO2 absorption, the overall second order reaction rate constants were determined from the kinetic measurements. The reaction order was found to be in between 0.99 and 1.03 with respect to amine for the later mentioned concentration range. The kinetic rate parameters were calculated and presented at each experimental condition. The second-order rate constants k2, were obtained as 31867.6, 56354.2, and 100946 m3 kmol-1 s-1 at 303, 313, and 323 K, respectively, with activation energy of 47.3 kJ mol−1. This new amine in the field of acid gas removal can be used as an activator by mixing with other alkanolamine solvents due to its very high rate of reaction with CO2.  相似文献   

6.
This paper describes the development of a microchannel-based Sabatier reactor for applications such as propellant production on Mars or space habitat air revitalization. Microchannel designs offer advantages for a compact reactor with excellent thermal control. This paper discusses the development of a Ru-TiO2-based catalyst using powdered form and its application and testing in a microchannel reactor. The resultant catalyst and microchannel reactor demonstrates good conversion, selectivity, and longevity in a compact device. A chemically reacting flow model is used to assist experimental interpretation and to suggest microchannel design approaches. A kinetic rate expression for the global Sabatier reaction is developed and validated using computational models to interpret packed-bed experiments with catalysts in powder form. The resulting global reaction is then incorporated into a reactive plug-flow model that represents a microchannel reactor.  相似文献   

7.
The steam gasification of biomass, in the presence of a calcium oxide (CaO) sorbent for carbon dioxide (CO2) capture, is a promising pathway for the renewable and sustainable production of hydrogen (H2). In this work, we demonstrate the potential of using a CaO sorbent to enhance hydrogen output from biomass gasifiers. In addition, we show that CaO materials are the most suitable sorbents reported in the literature for in situ CO2 capture. A further advantage of the coupled gasification-CO2 capture process is the production of a concentrated stream of CO2 as a byproduct. The integration of CO2 sequestration technology with H2 production from biomass could potentially result in the net removal of CO2 from the atmosphere.Maximum experimental H2 concentrations reported for the steam gasification of biomass, without CO2 capture, range between 40%-vol and 50%-vol. When CaO is used to remove CO2 from the product gas, as soon as it is formed, we predict an increase in the H2 concentrations from 40%-vol to 80%-vol (dry basis), based on thermodynamic modelling and previously published data.We examine the effect of key variables, with a specific focus on obtaining fundamental data relevant to the design and scale-up of novel biomass reactors. These include: (i) reaction temperature, (ii) pressure, (iii) steam-to-biomass ratio, (iv) residence time, and (v) CO2 sorbent loading. We report on operational challenges related to in situ CO2 capture using CaO-based sorbents. These include: (i) sorbent durability, (ii) limits to the maximum achievable conversion and (iii) decay in reactivity through multiple capture and release cycles. Strategies for enhancing the multicycle reactivity of CaO are reviewed, including: (i) optimized calcination conditions, and (ii) sorbent hydration procedures for reactivation of spent CaO. However, no CaO-based CO2 sorbent, with demonstrated high reactivity, maintained through multiple CO2 capture and release cycles, has been identified in the literature. Thus, we argue that the development of a CO2 sorbent, which is resistant to physical deterioration and maintains high chemical reactivity through multiple CO2 capture and release cycles, is the limiting step in the scale-up and commercial operation of the coupled gasification-CO2 capture process.  相似文献   

8.
Methane decomposition was carried out in the presence of CO2 over the nickel catalysts. Spherical alumina and glycothermally synthesized zirconia were used as the catalyst supports. In the presence of CO2, CH4 was decomposed in the same fashion as pure methane decomposition, and fibrous carbons were formed. However, the formation of hydrogen, carbon monoxide, and water continued even after the apparent carbon formation ceased, and this phenomenon was observed irrespective of the support materials. These results showed a sharp contrast against the results for the pure methane decomposition where the catalyst was completely deactivated when the carbon formation ceased. Further carbon formation was observed when the feed gas containing CO2 was replaced with pure CH4. Mechanisms for these phenomena are discussed from the thermodynamical point of view.  相似文献   

9.
This work presents the first research linking chemical engineering and sport science as far as we know. The COSMO-RS (conductor-like screening model for real solvents) model was used to make a priori prediction for the extraction of stimulants from aqueous solution by the double action of supercritical carbon dioxide (SC CO2) and ionic liquid. It was found that the suitable ionic liquids should have small molecular volume, unbranched group and no sterical shielding effect around anion charge center, and thus [C2MIM]+[OAc]- is the best among all the ionic liquids investigated. The calculated results from the COSMO-RS model were qualitatively consistent with those from experiments. On this basis, partition coefficients of amphetamine (C9N) and nikethamide (C10N) between aqueous phase and supercritical fluid (or MTBE) phase at different temperatures were calculated. It was shown that the separation efficiency of supercritical extraction with ionic liquid is generally higher than that of traditional liquid-liquid extraction. The modeling present can also be extended to the separation of trace amount of organic substances from aqueous solutions for other purposes.  相似文献   

10.
Diffusion of NaOH into a protein gel   总被引:1,自引:0,他引:1  
The diffusivity of NaOH in a layer of protein gel on an inert surface is measured by combining experimental study of the reactive dissolution of the gel with simulation of transport and reaction within the gel. Pure β-lactoglobulin gels, formed under three different gelation conditions, were used as a model system. The alkaline solutions cause the gel to swell, and destroy the interprotein interactions in the gel matrix. The swelling and cleavage reactions depend on the local concentration of hydroxide and so are sensitive to the rate of transport of hydroxide through the gel. Experiments were performed to determine the effect of the NaOH concentration on the hydroxide penetration thickness and on the velocity of the penetration front marked by phenolthalein indicator. Simple simulations and a more advanced semi-theoretical analysis were performed, with proteins being treated as ideal polyelectrolyte polymers. Both yielded good agreement with the experimental results. The effective diffusivity of NaOH in the protein gels was found to be similar to that in water. The analytical procedure can be extended in principle to any protein gel.  相似文献   

11.
The statistics of liquid-to-crystal nucleation are measured for clathrate-forming mixtures of tetrahydrofuran (THF) and water using an automatic lag time apparatus (ALTA). We measure the nucleation temperature using this new apparatus in which a single sample is repeatedly cooled, nucleated and thawed. This is done for a series of tetrahydrofuran concentrations and in several different sample tubes since the nucleation is heterogeneous and so occurring on the tube wall. The measurements are also done at the same concentrations and tubes but with an added catalyst, a single crystal of silver iodide.  相似文献   

12.
A nonlinear constrained optimization procedure is used in the cathode design in order to maximize the average current density at a fixed voltage in a polymer electrolyte membrane (PEM) fuel cell with interdigitated fuel/air distributors. The operation of the PEM fuel cell is studied using a steady-state, two-phase, two-dimensional electro-chemical model. The following geometrical parameters of the cathode are considered: the thickness, and length per one shoulder of the interdigitated air distributor and the length of the shoulder. The optimization results obtained show that within manufacturability controlled lower and the space-limitation controlled upper bounds of these parameters, the optimal-cathode design corresponds to the lower bounds in the cathode length per one shoulder of the interdigitated air distributor and the fraction of the length associated with the shoulders and at a low (but larger than the lower bound) value of the cathode thickness. These findings are explained using an analogy with the effect of pipe dimensions on the fluid flow through a pipe and by considering the role of forced convection on the oxygen transport to the membrane/cathode interface.  相似文献   

13.
The oxidative absorption of hydrogen sulfide (H2S) into a solution of ferric chelate of trans-1,2- diaminocyclohexanetetraacetate (CDTA) was studied in a counter-current laboratory column randomly packed with 15 mm plastic Ralu rings. The present investigation takes concern about the Kraft pulping situation where dilute H2S concentrations are omnipresent in large-volume gas effluents. A fractional two-level factorial approach was instigated to determine the significance of six operating variables, namely the solution's alkalinity (pH; 8.5-10.5), the liquid mass flow rate (L;1.73-), the solution's ionic strength (IC;0.01-), the gas mass flow rate (G;0.19-), the inlet H2S concentration (CH2S,0;70-430 ppm) and the initial ferric CDTA concentration (CFe,0;100 -). Initially, a Plackett-Burman design matrix of seven duplicated experiments revealed that pH is the leading factor controlling the H2S conversion rate while the ionic strength and ferric CDTA concentration effects remained negligible within the factorial domain. Surface response analysis based on 11 duplicated factorial experiments plus 10 central composite trials revealed that the H2S conversion significantly increases with liquid flow rate but decreases with growing H2S load up. Further examination about the influence of ferric CDTA on H2S absorption rate was set up over a broader concentration range (CFe,0;0- at pH of 9.5 and 10.5. It showed good potential at as H2S conversion increased by a significant 25% for both pH values in comparison to pure alkaline solutions containing no ferric CDTA.  相似文献   

14.
Sinking CO2 composite particles consisting of seawater, liquid CO2, and CO2 hydrate were produced by a coaxial flow injector fed with liquid CO2 and artificial seawater. The particles were injected into a high-pressure water tunnel facility to permit determination of their settling velocities and dissolution rates. Injections were performed at fixed pressures approximately equivalent to 1200-m, 1500-m, and 1800-m depths and at temperatures varying from approximately 2 to 5 °C. Immediately after injection, the cylindrical particles were observed to break away from the injector tip and often aggregated into sinking clusters. The seawater flow in the tunnel was then adjusted in a countercurrent flow mode to suspend the particles in an observation window so that images of the particles could be recorded for later analysis. The flow would often break or cause rearrangement of some of the clusters. Selected individual particles and some clusters were studied until they became too hydrodynamically unstable to follow. In general, the flow required to suspend clusters or individual particles decreased with time as the particles dissolved. For example, one particle was produced and observed for over 6 min at an average pressure of 15.022 MPa and an average temperature of 5.1 °C. Its sinking rate, determined from the flow required for stabilization, changed from 37.2 to 3.3 mm/s over this time. Particle sinking rates were compared to correlations from the literature for uniform cylindrical objects. Reasonable agreement was observed for short times; however, the observed decrease in sinking velocity with time was greater than that predicted by the correlations for longer times. Particle dissolution rates, based on changes in diameter, were also determined and varied from 5 to . A pseudo-homogeneous mass transfer model was used to predict single-particle dissolution rates. Good agreement was achieved between experimental dissolution data and the modeling results.  相似文献   

15.
The intrinsic rate constants of the CaO-CO2 reaction, in the presence of syngas, were studied using a grain model for a naturally occurring calcium oxide-based sorbent using a thermogravimetric analyzer. Over temperatures ranging from 580 to 700 °C, it was observed that the presence of CO and H2 (with steam) during carbonation caused a significant increase in the initial rate of carbonation, which has been attributed to the CaO surface sites catalyzing the water-gas shift reaction, increasing the local CO2 concentration. The water-gas shift reaction was assumed to be responsible for the increase in activation energy from 29.7 to 60.3 kJ/mol for limestone based on the formation of intermediate complexes. Changes in microporosity due to particle sintering during calcination have been credited with the rapid initial decrease in cyclic CaO maximum conversion for limestone particles, whereas the presence of steam during carbonation has been shown to improve the long-term maximum conversion in comparison to previous studies without steam present.  相似文献   

16.
The milling behaviour of microcrystalline cellulose (MCC) and α-lactose monohydrate (αLM) in an oscillatory single ball mill has been analysed by using the Distinct Element Method (DEM). The experimental results suggest that the milling behaviour of αLM is more strongly influenced by the milling frequency as compared to MCC. A similar conclusion is also drawn from the DEM results. The milling behaviour of MCC and αLM is described by a first order rate process, and its rate constant, Kp, is found to correlate very well with the milling power, Pn, determined by the DEM simulation, except for the milling behaviour of αLM at 18 Hz. For the latter, there appears to be an incubation time after which the milling rate increases substantially. The results presented here provide a basis for predicting the milling behaviour of a material systematically based on the fundamental material properties and the machine dynamics without the need for extensive experiment and use of large quantities of materials.  相似文献   

17.
Characterization of flow phenomena induced by ultrasonic horn   总被引:1,自引:0,他引:1  
Mean flow and turbulence parameters have been measured using laser Doppler anemometer (LDA) in ultrasound reactor. The effects of the ultrasonic power have been investigated over a power density (P/V) range of 15-. The liquid circulation velocities are dominant in the zone nearer to the source of energy and are substantially low at the walls and at the bottom of the reactor. The levels of turbulence kinetic energy and dissipation rate are high near the horn and decrease rapidly with increasing distance from the horn. Average turbulent normal stresses are larger than the turbulent shear stresses. However, they are much lower than stirred reactors when compared at the same power consumption per unit mass. Comparisons of LDA measurements and computational fluid dynamics (CFD) predictions have been presented. The good agreement indicates the validity of the CFD model. The flow information has been extended for the prediction of mixing time. For uniform mixing in ultrasound-assisted reactors, optimum power density and diameter of the vessel is needed, yet it is far less effective than conventional stirred vessel. The possibility of optimization has been suggested in terms of power dissipation and the vessel size.  相似文献   

18.
The present paper analyses the gas/liquid mass transfer process employing carbon dioxide as gas phase and ternary water in oil microemulsions as absorbent liquid phases. The liquid phases were obtained by a direct mixing of water, 2,2,4-trimethylpentane and sodium bis(2-ethylhexyl)sulfosuccinate (Aerosol OT). The characteristics of the microemulsions employed as liquid phase have been analysed to interpret the experimental results observed in the absorption process. More specifically, they have been analysed in relation to the percolation phenomenon and the effects produced by this phenomenon upon the different physical properties. Characteristic results have been observed for the gas/liquid mass transfer using microemulsions, because ternary microemulsions with high viscosity values in relation to pure water show a faster absorption process than the carbon dioxide/water system. This characteristic behaviour has been explained on the basis of the microemulsions internal dynamics.  相似文献   

19.
Conductivity measurements in PEO30MI polymer electrolytes with M=Li, Na, K, Rb, or Cs over the temperature range from about 65 to 200 °C show an increasing tendency for salt precipitation with increasing cation size. The salt precipitation in these complexes upon heating is revealed by the decrease of the dc conductivity starting at a critical temperature Tc. Whereas LiI and NaI complexes do not show precipitation effects, Tc monotonically decreases from about 140 to 65 °C when changing the salt component from KI via RbI to CsI. For the PEO-RbI system, precipitation is further investigated by nuclear magnetic resonance (NMR) and tracer diffusion experiments. NMR analysis unambiguously demonstrates the onset of RbI salt precipitation and the increase of the precipitate fraction with increasing temperature. In diffusion experiments on PEO30RbI with the radiotracers and , the precipitation effect is manifested by anomalous features in the penetration profiles, however, without noticeable changes in their depth range. Combining the resulting tracer diffusion coefficients with the dc conductivity data enables us to assess crucial parameters characterizing ionic transport in PEO30RbI.  相似文献   

20.
Nano-particulate high surface area CeO2 was found to have a useful methanol decomposition activity producing H2, CO, CO2, and a small amount of CH4 without the presence of steam being required under solid oxide fuel cell temperatures, 700-1000 °C. The catalyst provides high resistance toward carbon deposition even when no steam is present in the feed. It was observed that the conversion of methanol was close to 100% at 850 °C, and no carbon deposition was detected from the temperature programmed oxidation measurement.The reactivity toward methanol decomposition for CeO2 is due to the redox property of this material. During the decomposition process, the gas-solid reactions between the gaseous components, which are homogeneously generated from the methanol decomposition (i.e., CH4, CO2, CO, H2O, and H2), and the lattice oxygen on ceria surface take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen ( can produce synthesis gas (CO and H2) and also prevent the formation of carbon species from hydrocarbons decomposition reaction (CnHmnC+m/2H2). VO·· denotes an oxygen vacancy with an effective charge 2+. Moreover, the formation of carbon via Boudouard reaction (2COCO2+C) is also reduced by the gas-solid reaction of carbon monoxide with the lattice oxygen .At steady state, the rate of methanol decomposition over high surface area CeO2 was considerably higher than that over low surface area CeO2 due to the significantly higher oxygen storage capacity of high surface area CeO2, which also results in the high resistance toward carbon deposition for this material. In particular, it was observed that the methanol decomposition rate is proportional to the methanol partial pressure but independent of the steam partial pressure at 700-800 °C. The addition of hydrogen to the inlet stream was found to have a significant inhibitory effect on the rate of methanol decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号