首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a new MILP mathematical formulation for the scheduling of resource-constrained multiproduct plants involving continuous processes. In such facilities, a sequence of continuous processing steps is usually carried out to produce a significant number of final products and required intermediates. In order to reduce equipment idle time due to unbalanced stage capacities, storage tanks are available for temporary inventory of intermediates. The problem goal is to maximize the plant economic output while satisfying specified minimum product requirements. The proposed approach relies on a continuous time domain representation that accounts for sequence-dependent changeover times and storage limitations without considering additional tasks. The MILP formulation was applied to a real-world manufacturing facility producing seven intermediates and fifteen final products. Compared with previous scheduling methodologies, the proposed approach yields a much simpler problem representation with a significant saving in 0–1 variables and sequencing constraints. Moreover, it provides a more realistic and profitable production schedule at lower computational cost.  相似文献   

2.
This work presents a new MILP mathematical formulation for the resource-constrained short-term scheduling of flowshop batch facilities with a known topology and limited supplies of discrete resources. The processing structure is composed of multiple stages arranged in series and several units working in parallel at each one. All production orders consist of a single batch and follow the same processing sequence throughout the plant. The proposed MILP approach is based on a continuous time domain representation that relies on the notion of order predecessor and accounts for sequence-dependent setup times. Assignment and sequencing decisions are independently handled through separate sets of binary variables. A proper formulation of the sequencing constraints provides a substantial saving in sequencing variables and constraints. By postulating a pair of conditions for the simultaneous execution of processing tasks, rather simple resource constraints requiring a few extra binary variables are derived. The proposed MILP scheduling approach shows a remarkable computational efficiency when applied to real-world problems.  相似文献   

3.
A scheduling model for a multi‐product, multistage batch plant with parallel units is presented. The objective is to maximize the weighted completion times of orders in every processing stage while imposing a penalty on the slower orders. The proposed model uses the continuous‐time representation mode and describes the allocations of tasks, units and stages by a set of binary variables. In order to reduce the model size and provide a more effective solution to the model, a pre‐ordering approach that sorts the processing sequence of orders is developed. The pre‐ordering approach identifies the infeasible assignments through which the number of binary variables is significantly reduced. Illustrative examples are provided to show that the size of the proposed model is small, and therefore, needs much less computational effort in comparison with the existing models in the literature.  相似文献   

4.
A batch manager is developed for the dynamic scheduling and on-line management of process operations. The developed system consists of a process monitoring module and a dynamic scheduling module. When a deviation from the initial schedule is detected in a process monitoring module, dynamic scheduling is performed in the dynamic scheduling module and the initial schedule is adjusted to the proper schedule by using rescheduling algorithms presented in this paper. The adjusted schedule is shown in the process monitoring module. The dynamic scheduler in the batch manager copes with several unexpected process events of batch process operations by adjusting the EST (Earliest Start Time) of equipment, redetermining the batch path and reassigning tasks to equipment. This study focuses on the implementation of a batch manager with on-line dynamic scheduling for batch process management. Examples of fodder production batch processes illustrate the efficiency of the algorithms. This paper was supported by nondirected research fund, Korea Research Foundation, 1997.  相似文献   

5.
This article presents a new algorithm for scheduling multistage batch plants with a large number of orders and sequence‐dependent changeovers. Such problems are either intractable when solved with full‐space approaches or poor solutions result. We use decomposition on the entire set of orders and derive the complete schedule in several iterations, by inserting a couple of orders at a time. The key idea is to allow for partial rescheduling without altering the main decisions in terms of unit assignments and sequencing (linked to the binary variables) so that the combinatorial complexity is kept at a manageable level. The algorithm has been implemented for three alternative continuous‐time mixed integer linear programing models and tested through the solution of 10 example problems for different decomposition settings. The results show that an industrial‐size scheduling problem with 50 orders, 17 units distributed over six stages can effectively be solved in roughly 6 min of computational time. © 2010 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

6.
A novel rule-based model for multi-stage multi-product scheduling problem (MMSP) in batch plants with parallel units is proposed. The scheduling problem is decomposed into two sub-problems of order assignment and order sequencing. Firstly, hierarchical scheduling strategy is presented for solving the former sub-problem, where the multi-stage multi-product batch process is divided into multiple sequentially connected single process stages, and then the production of orders are arranged in each single stage by using forward order assignment strategy and backward order assignment strategy respectively according to the feature of scheduling objective. Line-up competition algorithm (LCA) is presented to find out optimal order sequence and order assignment rule, which can minimize total flow time or maximize total weighted process time. Computational results show that the proposed approach can obtain better solutions than those of the literature for all scheduling problems with more than 10 orders. Moreover, with the problem size increasing, the solutions obtained by the proposed approach are improved remarkably. The proposed approach has the potential to solve large size MMSP.  相似文献   

7.
This paper provides mathematical programming based optimization model and computational results for short-term scheduling of displacement batch digesters in a pulp industry. The scheduling problem involves development of an optimal solution that yields the best sequence of operations in each of the parallel batch digesters sharing common resources. The constraints are imposed on meeting the demand of pulp of different qualities within a specified time horizon. The problem comprises of both fixed-time and variable time durations of the tasks, different storage policies, zero-wait and finite wait times, and handling of shared resources. The scheduling problem is formulated using a state-task-network (STN) representation of production recipes, based on discrete time representation resulting in a mixed-integer linear programming (MILP) problem which is solved using GAMS software. The basic framework is adapted from the discrete-time model of Kondili et al. (Comput. Chem. Eng., 1993, 17, 211–227). Different case studies involving parallel digesters in multiple production lines are considered to demonstrate the effectiveness of the proposed formulation using two different objective functions.  相似文献   

8.
针对操作时间不确定条件下限制等待时间过程的优化设计 ,提出一种新的生产安排方法 .同在线安排相比 ,该方法可以简化生产安排 ,并适于长周期生产 .同时采用该方法安排生产可以简化过程的设计 .通过模拟实验表明采用该方法安排生产是可行的  相似文献   

9.
The scheduling of batch chemical facilities may be modeled as a generalized flowshop problem, for which the objective is to minimize the products' completion time. In particular, this paper examines the scheduling difficulties that arise if interstage storage is used within the production facility. A branch and bound solution procedure is presented which uses a simulation model to evaluate sequence compeltion times. An initial upper bound completion time is determined based on a heuristic scheduling rule.  相似文献   

10.
This paper presents a novel genetic algorithm (GA) for the scheduling of a typical multi-purpose batch plant with a network structure. Multi-purpose process scheduling is more difficult to deal with compared to single-stage or multi-stage process scheduling. A large amount of literature on this problem has been published and nearly all of the authors used mathematical programming (MP) methods for solution. In the MP methods, a huge number of binary variables, as well as numerous constraints to consider mass balance and sequencing of batches in space/time dimensions, are needed for the large-size problem, which leads to very long computational time. In the proposed GA, only a small part of the binary variables are selected to code into binary chromosomes, which is realized through the identification of crucial products/tasks/units. Due to the logical heuristics utilized to decode a chromosome into a schedule, only the feasible solution space is searched. Our genetic algorithm has first been devised with particular crossover for makespan minimization and then adjusted for production maximization.  相似文献   

11.
In the first part of this series of papers we presented a new network-based continuous-time representation for the short-term scheduling of batch processes, which overcomes numerous shortcomings of existing approaches. In this second part, we discuss how this representation can be extended to address aspects such as: (i) preventive maintenance activities on unary resources (e.g., processing and storage units) that were planned ahead of time; (ii) resource-constrained changeover activities on processing and shared storage units; (iii) non-instantaneous resource-constrained material transfer activities; (iv) intermediate deliveries of raw materials and shipments of finished products at predefined times; and (v) scenarios where part of the schedule is fixed because it has been programmed in the previous scheduling horizon. The proposed integrated framework can be used to address a wide variety of process scheduling problems, many of which are intractable with existing tools.  相似文献   

12.
An engineered evolutionary algorithm for a realistic chemical batch scheduling problem with uncertain data is developed systematically. The problem is formulated as a two stage stochastic integer program with discrete scenarios. The model is solved by a stage decomposition-based hybrid algorithm using an evolutionary algorithm combined with mixed-integer programming. Earlier experiments with a standard evolutionary algorithm led to the hypothesis that the constrained search space is not covered well such that in some cases the population converges to a subset of the solution space which does not include the best known solution. An efficient engineered evolutionary algorithm is developed which is shown to cover the feasible set significantly better such that a high quality feasible schedule can be generated comparatively fast. As the hierarchical structure of the case study is typical for many batch scheduling problems, some general principles may be postulated from the experience gained here.  相似文献   

13.
This article presents a new model for the short‐term scheduling of multistage batch plants with a single unit per stage, mixed storage policies, and multiple shared resources for moving orders between stages. Automated wet‐etching stations for wafer fabrication in semiconductor plants provide the industrial context. The uncommon feature of the continuous‐time model is that it relies on time grids, as well as on global precedence sequencing variables, to find the optimal solution to the problem. Through the solution of a few test cases taken from the literature, we show that new model performs significantly better than a pure sequencing formulation and better than a closely related hybrid model with slightly different sequencing variables. We also propose a new efficient heuristic procedure for extending the range of problems that can effectively be solved, which essentially solves relaxed and constrained versions of the full‐space model. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
This paper presents a continuous-time mixed-integer linear programming (MILP) model for short-term scheduling of multi-stage multi-product batch plants. The model determines the optimal sequencing and the allocation of customer orders to non-identical processing units by minimizing the earliness and tardiness of order completion. This is a highly combinatorial problem, especially when sequence-dependent relations are considered such as the setup time between consecutive orders. A common approach to this scheduling problem relies on the application of tetra-index binary variables, i.e. (order, order, stage, unit) to represent all the combinations of order sequences and assignments to units in the various stages. This generates a huge number of binary variables and, as a consequence, much time is required for solutions. This paper proposes a novel formulation that replaces the tetra-index binary variables by one set of tri-index binary variables (order, order, stage) without losing the model's generality. By the elimination of the unit index, the new formulation requires considerably fewer binary variables, thus significantly shortening the solution time.  相似文献   

15.
Short-term scheduling of batch processes is a complex combinatorial problem with remarkable impact on the total revenue of chemical plants. It consists of the optimal allocation of limited resources to tasks over time in order to manufacture final products following given batch recipes. This article addresses the short-term scheduling of multipurpose batch plants, using a mixed integer linear programming formulation based on the state-task network representation. It employs both single-grid and multi-grid continuous-time representations, derived from generalized disjunctive programming. In comparison to other multigrid scheduling models in the literature, the proposed multi-grid model uses no big-M constraints and leads to more compact mathematical models with strong linear relaxations, which often results in shorter computational times. The single-grid counterpart of the formulation is not as favorable, as it leads to weaker linear relaxations than the multi-grid approach and is not capable of handling changeover time constraints.  相似文献   

16.
The main objective of this paper is to develop an integrated approach to coordinate short-term scheduling of multi-product blending facilities with nonlinear recipe optimization. The proposed strategy is based on a hierarchical concept consisting of three business levels: Long-range planning, short-term scheduling and process control. Long-range planning is accomplished by solving a large-scale nonlinear recipe optimization problem (multi-blend problem). Resulting blending recipes and production volumes are provided as goals for the scheduling level. The scheduling problem is formulated as a mixed-integer linear program derived from a resource-task network representation. The scheduling model permits recipe changeovers in order to utilize an additional degree of freedom for optimization. By interpreting the solution of the scheduling problem, new constraints can be imposed on the previous multi-blend problem. Thus bottlenecks arising during scheduling are considered already on the topmost long-range planning level. Based on the outlined approach a commercial software system has been designed to optimize the operation of in-line blending and batch blending processes. The application of the strategy and software is demonstrated by a detailed case study.  相似文献   

17.
In this paper we present a multi-period mixed integer linear programming model for the simultaneous planning and scheduling of single-stage multi-product continuous plants with parallel units. While effective for short time horizons, the proposed scheduling model becomes computationally expensive to solve for long time horizons. In order to address this problem, we propose a bi-level decomposition algorithm in which the original problem is decomposed into an upper level planning and a lower level scheduling problem. For the representation of the upper level, we propose an MILP model which is based on a relaxation of the original model, but accounts for the effects of scheduling by incorporating sequencing constraints, which results in very tight upper bounds. In the lower level the simultaneous planning and scheduling model is solved for a subset of products predicted by the upper level. These sub-problems are solved iteratively until the upper and lower bounds converge. A number of examples are presented that show that the planning model can often obtain the optimal schedule in one single iteration.  相似文献   

18.
In this work, the mixed integer linear programming (MILP) model developed in Orçun et. al 1996 for optimal planning and scheduling of batch process plants under uncertain operating conditions is further improved to deal also with discrete probability functions. Furthermore, the logic behind integrating the processing uncertainties within the MILP model is implemented on the variations in the production volumes that can be faced in some batch processes such as Baker's yeast production. The modified model is tested on Baker's yeast production plant data to illustrate the effect of uncertainties on the production planning and scheduling. The results show that the plant production will be improved by 20% when the optimal production planning and scheduling is utilized by fine tuning the degree of risk the management can resist. An example on how a process design engineer may utilize such an MILP model for optimal planning and scheduling of batch process plant and identify plant problems, such as the bottleneck operations, is also included. A simulation type analysis on how to improve the processing site, i.e. the effect of introducing an extra operator to the bottleneck operation, is also demonstrated in this work using the available plant data.  相似文献   

19.
This paper addresses the optimal schedule of a resource constrained four-batch digester system of an industrial acid sulphite pulp mill. This involves the development of two different models, one to model the scheduling operational problem and the other the batch digester operation—process model. The first model uses a discrete-time Resource Task Network (RTN) based representation leading to a Mixed Integer Linear Program (MILP) formulation. In this, the main operational limitation, steam availability, is modelled through the definition of a superstructure including the most relevant heating alternatives. The duration of the generated heating tasks was estimated through the use of the process model—a distributed heterogeneous dynamic model in gPROMS, with a heat-transfer resistance at the solid–fluid-interface—validated with experimental plant data. The optimal schedules obtained showed that an increase in the total available steam from the boiler is vital to allow a higher level of productivity and that not much can be done regarding steam sharing improvements.  相似文献   

20.
This contribution introduces an efficient constraint programming (CP) model that copes with large-scale scheduling problems in multiproduct multistage batch plants. It addresses several features found in industrial environments, such as topology constraints, forbidden product-equipment assignments, sequence-dependent changeover tasks, dissimilar parallel units at each stage, limiting renewable resources and multiple-batch orders, among other relevant plant characteristics. Moreover, the contribution deals with various inter-stage storage and operational policies. In addition, multiple-batch orders can be handled by defining a campaign operating mode, and lower and upper bounds on the number of batches per campaign can be fixed. The proposed model has been extensively tested by means of several case studies having various problem sizes and characteristics. The results have shown that the model can efficiently solve medium and large-scale problems with multiple constraining features. The approach has also rendered good quality solutions for problems that consider multiple-batch orders under a campaign-based operational policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号