首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different low Ni content (10 wt.%) anode catalysts were investigated for intermediate temperature (800 °C) operation in solid oxide fuel cells fed with dry propane. Both catalysts were prepared by the impregnation of a Ni-precursor on different oxide supports, i.e. gadolinia doped ceria (CGO) and La0.6Sr0.4Fe0.8Co0.2O3 perovskite, and thermal treated at 1100 °C for 2 h. The Ni-modified perovskite catalyst was mixed with a CGO powder and deposited on a CGO electrolyte to form a composite catalytic layer with a proper triple-phase boundary. Anode reduction was carried out in-situ in H2 at 800 °C for 2 h during cell conditioning. Electrochemical performance was recorded at different times during 100 h operation in dry propane. The Ni-modified perovskite showed significantly better performance than the Ni/CGO anode. A power density of about 300 mW cm−2 was obtained for the electrolyte supported SOFC in dry propane at 800 °C. Structural investigation of the composite anode layer after SOFC operation indicated a modification of the perovskite structure and the occurrence of a La2NiO4 phase. The occurrence of metallic Ni in the Ni/CGO system caused catalyst deactivation due to the formation of carbon deposits.  相似文献   

2.
A solid oxide fuel cell constructed from Ni-SDC anode and LSGM electrolyte was applied to the partial oxidation of methane to syngas (CO+H2) at 700-800 °C with the merits of co-generation of electricity and controllable O2 supply. It was found that the co-generated syngas at H2/CO ratio of 1.4-2.0 varied with applied current densities, CH4 flow rates and operating temperatures. The cell voltage at 100 mA cm−2 and 800 °C was 0.90 V, i.e. about 90 mW cm−2 power density could be obtained. The cell operating at 50 mA cm−2 for 24 h almost showed no degradation of the cell performance. The observed carbon deposition seemed mainly taking place by CH4 cracking reaction.  相似文献   

3.
The carbon monoxide (CO) poisoning effect on carbon supported catalysts (Pt-Ru/C and Pt/C) in polymer electrolyte membrane (PEM) fuel cells has been investigated at higher temperatures (T > 100 °C) under different relative humidity (RH) conditions. To reduce the IR losses in higher temperature/lower relative humidity, Nafion®-Teflon®-Zr(HPO4)2 composite membranes were applied as the cell electrolytes. Fuel cell polarization investigation as well as CO stripping voltammetry measurements was carried out at three cell temperatures (80, 105 and 120 °C), with various inlet anode relative humidity (35%, 58% and 100%). CO concentrations in hydrogen varied from 10 ppm to 2%. The fuel cell performance loss due to CO poisoning was significantly alleviated at higher temperature/lower RH due to the lower CO adsorption coverage on the catalytic sites, in spite that the anode catalyst utilization was lower at such conditions due to higher ionic resistance in the electrode. Increasing the anode inlet relative humidity at the higher temperature also alleviated the fuel cell performance losses, which could be attributed to the combination effects of suppressing CO adsorption, increasing anode catalyst utilization and favoring OHads group generation for easier CO oxidation.  相似文献   

4.
J. Xie  G.S. Cao  M.J. Zhao 《Electrochimica acta》2005,50(13):2725-2731
In situ solvothermally synthesized composite (SSC) and mechanically blended composite (MBC) of nanosized CoSb3 and multiwalled carbon nanotubes (MWNTs) were prepared and investigated as potential anode materials for Li-ion batteries. It was found that SSC exhibits an entanglement structure of nanosized CoSb3 and MWNTs and shows significantly better cycling stability than MBC. The reversible capacity of SSC electrode reaches 312 mA h g−1 at the first cycle and remains above 265 mA h g−1 after 30 cycles.  相似文献   

5.
Liwen Ji 《Electrochimica acta》2010,55(5):1605-7699
Copper-loaded carbon nanofibers are fabricated by thermally treating electrospun Cu(CH3COO)2/polyacrylonitrile nanofibers and utilized as an energy-storage material for rechargeable lithium-ion batteries. These composite nanofibers deliver more than 400 mA g−1 reversible capacities at 50 and 100 mA g−1 current densities and also maintain clear fibrous morphology and good structural integrity after 50 charge/discharge cycles. The relatively high capacity and good cycling performance of these composite nanofibers, stemmed from the integrated combination of metallic copper and disordered carbon as well as their unique textures and surface properties, make them a promising electrode candidate for next-generation lithium-ion batteries.  相似文献   

6.
The electrochemical oxidation of Ibuprofen (Ibu) was performed using a Ti/Pt/PbO2 electrode as the anode, prepared according to literature, and a boron doped diamond (BDD) electrode, commercially available at Adamant Technologies. Tests were performed with model solutions of Ibu, with concentrations ranging from 0.22 to 1.75 mM for the Ti/Pt/PbO2 electrode and 1.75 mM for the BDD electrode, using 0.035 M Na2SO4 as the electrolyte, in a batch cell, at different current densities (10, 20 and 30 mA cm−2). Absorbance measurements, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) tests were conducted for all samples. The results have shown a very good degradation of Ibu, with COD removals between 60 and 95% and TOC removals varying from 48 to 92%, in 6 h experiments, with higher values obtained with the BDD electrode. General Current Efficiency and Mineralization Current Efficiency, determined for both electrodes, show a similar behaviour for 20 mA cm−2 but a very different one at 30 mA cm−2. The combustion efficiency was also determined for both anodes, and found to be slightly higher with BDD at lower current density and equal to 100% for both anodes at 30 mA cm−2.  相似文献   

7.
This paper presents results of recent investigations to develop an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing. Only easy steps were chosen in this preparation technique in order to simplify the method, aiming at cost reduction. The influence of MEA fabrication parameters like electrode pressing or annealing on the performance of hydrogen fuel cells was studied by single cell measurements with H2/O2 operation. Toray paper and carbon cloth as gas diffusion layer (GDL) materials were compared and the composition of electrode inks was optimized with regard to most favorable fuel cell performance. Commercial E-TEK catalyst was used on the anode and cathode with Pt loadings of 0.4 and 0.6 mg/cm2, respectively. The MEA with best performance delivered approximately 0.58 W/cm2, at 65 °C cell temperature, 80 °C anode humidification, dry cathode and ambient pressure on both electrodes. The results show, that changing electrode compositions or the use of different materials with same functionality (e.g. different GDLs), have a larger effect on fuel cell performance than changing preparation parameters like hot pressing or spraying conditions, studied in previous work.  相似文献   

8.
Micro-scaled spherical CoSn2/Sn alloy powders synthesized from oxides of Sn and Co via carbothermal reduction at 800 °C were examined for use as anode materials in Li-ion battery. The phase composition and particle morphology of the CoSn2/Sn alloy composite powders were investigated by XRD, SEM and TEM. The prepared CoSn2/Sn alloy composite electrode exhibits a low initial irreversible capacity of ca. 140 mAh g−1, a high specific capacity of ca. 600 mAh g−1 at constant current density of 50 mA g−1, and a good rate capability. The stable discharge capacities of 500-515 mAh g−1 and the columbic efficiencies of 95.8-98.1% were obtained at current density of 500 mA g−1. The relatively large particle size of CoSn2/Sn alloy composite powder is apparently favorable for the lowering of initial capacity loss of electrode, while the loose particle structural characteristic and the Co addition in Sn matrix should be responsible for the improvement of cycling stability of CoSn2/Sn electrode.  相似文献   

9.
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO2 and IrO2 dimensionally stable anode (DSA®) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir0.30Sn0.70O2 is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm−2 and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm−2 leads to virtually total mineralization (release of phosphate ions = 91%) for all the evaluated oxide materials.  相似文献   

10.
An effective method of carbothermal reduction was employed to prepare spherical microcrystal NiSnx alloy powders from oxides of Sn and Ni used as anode materials for Li-ion battery. According to XRD, SEM and TEM analysis, the synthesized spherical NiSnx powders show a loose submicro/micro-sized structure and a multi-phase composition. The prepared NiSnx alloy composite electrode exhibits a stable discharge capacity of electrode is ca. 380 mAh g−1 at constant current density of 50 mA g−1, and can be retained at 350 mAh g−1 after 25 cycles. Moreover, NiSnx alloys exhibit excellent high rate performance, i.e. stable discharge capacities of 300-310 mAh g−1 and the coulombic efficiencies of 97.5-99.5% have been obtained at the current density of 500 mA g−1. The loose submicro-sized particle structural characteristic and the Ni addition in Sn matrix should be responsible for the improvement of cycling stability of NiSnx electrode. The carbothermal reduction method is simple, low-cost and mass-productive, which should be viable to other alloy composite materials system of rechargeable lithium ion batteries.  相似文献   

11.
In this paper, La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) and Ni impregnated porous yttria-stabilized zirconia (YSZ) anodes have been fabricated in two different ways. The testing results demonstrated the excellent performance of the anode made by infiltrating a mixture of LSCrM and Ni(NO3)2 solutions into porous YSZ matrix. After reduction of the anode with hydrogen, an inner nano-network structure with mixed ionic-electronic conducting path has been formed within and between these added particles. A single cell with the anode at 800 °C exhibited the maximum power densities of 1151 and 704 mW cm−2 when dry H2 and CH4 were used as the fuels, respectively; under the same conditions, the cell performances for LSCrM and Ni impregnated YSZ anode separately were 810 and 508 mW cm−2. A cavity model was proposed to simulate the impregnating process and the loading was calculated. No carbon deposition was detected in the anode, even with the presence of Ni, after operation in dry CH4 for about 6 h under open-circuit condition.  相似文献   

12.
The electrochemical reduction of high pressure CO2 with a Cu electrode in cold methanol was investigated. A high pressure stainless steel vessel, with a divided H-type glass cell, was employed. The main products from CO2 by the electrochemical reduction were methane, ethylene, carbon monoxide and formic acid. In the electrolysis of high pressure CO2 at low temperature, the reduction products were formed in the order of carbon monoxide, methane, formic acid and ethylene. The best current efficiency of methane was of 20% at −3.0 V. The maximum partial current density for CO2 reduction was approximately 15 mA cm−2. The partial current density ratio of CO2 reduction and hydrogen evolution, i(CO2)/i(H2), was more than 2.6 at potentials more positive than −3.0 V. This work can contribute to the large-scale manufacturing of fuel gases from readily available and inexpensive raw materials, CO2-saturated methanol from industrial absorbers (the Rectisol process).  相似文献   

13.
W.H. Wang 《Electrochimica acta》2007,52(24):6755-6762
Porous graphite felts have been used as electrode materials for all-vanadium redox flow batteries due to their wide operating potential range, stability as both an anode and a cathode, and availability in high surface area. In this paper, the carbon felt was modified by pyrolysis of Ir reduced from H2IrCl6. ac impedance and steady-state polarization measurements showed that the Ir-modified materials have improved activity and lowered overpotential of the desired V(IV)/V(V) redox process. Ir-modification of carbon felt enhanced the electro-conductivity of electrode materials. The Ir-material, when coated on the graphite felt electrode surface, lowered the cell internal resistance. A test cell was assembled with the Ir-modified carbon felt as the activation layer of the positive electrode, the unmodified raw felt as the activation layer of the negative electrode. At an operating current density of 20 mA cm−2, a voltage efficiency of 87.5% was achieved. The resistance of the cell using Ir-modified felt decreased 25% compared to the cell using non-modified felt.  相似文献   

14.
Electrochemical deposition of polyaniline (PANI) is carried out on a porous carbon substrate for supercapacitor studies. The effect of substrate is studied by comparing the results obtained using platinum, stainless steel and porous carbon substrates. PANI deposited at 100 mV s−1 sweep rate by potentiodynamic technique on porous carbon substrate is found to possess superior capacitance properties. Experimental variables, namely, concentrations of aniline monomer and H2SO4 supporting electrolyte are varied and arrived at the optimum concentrations to obtain a maximum capacitance of PANI. Low concentrations of both aniline and H2SO4, which produce PANI at low rates, are desirable. The PANI deposits prepared under these conditions possess network morphology of nanofibrils. Capacitance values as high as 1600 F g−1 are obtained and PANI coated carbon electrodes facilitate charge-discharge current densities as high as 45 mA cm−2 (19.8 A g−1). Electrodes are found to be fairly stable over a long cycle-life, although there is some capacitance loss during the initial stages of cycling.  相似文献   

15.
We first investigated the effect of partial pressure of hydrogen (H2) on the performance of polymer electrolyte fuel cells (PEFCs) by controlling the ratio of hydrogen and nitrogen (N2). The cell performance with Pt/C anode was significantly decreased with reduction of the partial pressure of H2 in the presence of carbon monoxide (CO), while the performance variation was negligible in the absence of CO. Severe CO poisoning on Pt/C electrode at low partial pressure of H2 might be attributed to the hindering effect by N2 and CO. On the other hand, PtRu/C anode showed consistent power performance even at low partial pressure of H2.  相似文献   

16.
The amperometric bienzyme glucose biosensor utilizing horseradish peroxidase (HRP) and glucose oxidase (GOx) immobilized in poly(toluidine blue O) (PTBO) film was constructed on multi-walled carbon nanotube (MWNT) modified glassy carbon electrode. The HRP layer could be used to analyze hydrogen peroxide with toluidine blue O (TBO) mediators, while the bienzyme system (HRP + GOx) could be utilized for glucose determination. Glucose underwent biocatalytic oxidation by GOx in the presence of oxygen to yield H2O2 which was further reduced by HRP at the MWNT-modified electrode with TBO mediators. In the absence of oxygen, glucose oxidation proceeded with electron transfer between GOx and the electrode mediated by TBO moieties without H2O2 production. The bienzyme electrode offered high sensitivity for amperometric determination of glucose at low potential, displaying Michaelis-Menten kinetics. The bienzyme glucose biosensor displayed linear response from 0.1 to 1.2 mM with a sensitivity of 113 mA M−1 cm−2 at an applied potential of −0.10 V in air-saturated electrolytes.  相似文献   

17.
Makoto Togo 《Electrochimica acta》2007,52(14):4669-4674
Viamin K3-modified poly-l-lysine (PLL-VK3) was synthesized and used as the electron transfer mediator during catalytic oxidation of NADH by diaphorase (Dp) at the anode of biofuel cell. PLL-VK3 and Dp were co-immobilized on an electrode and then coated with NAD+-dependent glucose dehydrogenase (GDH). The resulting enzymatic bilayer (abbreviated PLL-VK3/Dp/GDH) catalyzed glucose oxidation. Addition of carbon black (Ketjenblack, KB) into the bilayer enlarged the effective surface area of the electrode and consequentially increased the catalytic activity. An oxidation current of ca. 2 mA cm−2 was observed when the electrochemical cell contained a stirred 30 mM glucose, 1.0 mM NAD+, pH 7.0 phosphate-buffered electrolyte solution. The performance of glucose/O2 biofuel cells, constructed as fluidic chips with controllable fuel flow and containing a KB/PLL-VK3/Dp/GDH-coated anode and an Ag/AgCl or a polydimethylsiloxane-coated Pt cathode, were evaluated. The open circuit voltage of the cell with the PDMS-coated Pt cathode was 0.55 V and its maximum power density was 32 μW cm−2 at 0.29 V when a pH 7.0-buffered fuel containing 5.0 mM glucose and 1.0 mM NAD+ was introduced into the cell at a flow rate of 1.0 mL min−1. The cell's output increased as the flow rate increased. During 18 h of continuous operation of the cell with a load of 100 kΩ, the output current density declined by ca. 50%, probably due to swelling of the enzyme bilayer.  相似文献   

18.
The performance of H2/O2 proton exchange membrane fuel cells (PEMFCs) fed with CO-contaminated hydrogen was investigated for anodes with PdPt/C and PdPtRu/C electrocatalysts. The physicochemical properties of the catalysts were characterized by energy dispersive X-ray (EDX) analyses, X-ray diffraction (XRD) and “in situ” X-ray absorption near edge structure (XANES). Experiments were conducted in electrochemical half and single cells by cyclic voltammetry (CV) and I-V polarization measurements, while DEMS was employed to verify the formation of CO2 at the PEMFC anode outlet. A quite high performance was achieved for the PEMFC fed with H2 + 100 ppm CO with the PdPt/C and PdPtRu/C anodes containing 0.4 mg metal cm−2, with the cell presenting potential losses below 200 mV at 1 A cm−2, with respect to the system fed with pure H2. For the PdPt/C catalysts no CO2 formation was seen at the PEMFC anode outlet, indicating that the CO tolerance is improved due to the existence of more free surface sites for H2 electrooxidation, probably due to a lower Pd-CO interaction compared to pure Pd or Pt. For PdPtRu/C the CO tolerance may also have a contribution from the bifunctional mechanism, as shown by the presence of CO2 in the PEMFC anode outlet.  相似文献   

19.
The present paper shows that the performance of an inexpensive activated carbon used in electrochemical capacitors can be significantly enhanced by a simple treatment with KOH at 850 °C. The changes in the specific surface area, as well as in the surface chemistry, lead to high capacitance values, which provide a noticeable energy density.The KOH-treatment of a commercial activated carbon leads to highly pure carbons with effective surface areas in the range of 1300-1500 m2 g−1 and gravimetric capacitances as high as three times that of the raw carbon.For re-activated carbons, one obtains at low current density (50 mA g−1) values of 200 F g−1 in aqueous electrolytes (1M H2SO4 and 6M KOH) and around 150 F g−1 in 1M (C2H5)4NBF4 in acetonitrile. Furthermore, the resulting carbons present an enhanced and stable performance for high charge/discharge load in organic and aqueous media.This work confirms the possibilities offered by immersion calorimetry on its own for the prediction of the specific capacitance of carbons in (C2H5)4NBF4/acetonitrile. On the other hand, it also shows the limitations of this technique to assess, with a good accuracy, the suitability of a carbon to be used as capacitor electrodes operating in aqueous electrolytes (H2SO4 and KOH).  相似文献   

20.
We report on the use of the polyoxometalate acids of the series [PMo(12 − n)VnO40](3 + n)− (n = 0-3) as electrocatalysts in both the anode and the cathode of polymer-electrolyte membrane (PEM) fuel cells. The heteropolyacids were incorporated as catalysts in a commercial gas diffusion electrode based on Vulcan XC-72 carbon which strongly adsorbed a low loading of the catalyst, ca. 0.1 mg/cm2. The moderate activity observed was independent of the number of vanadium atoms in the polyoxometalate. In the anode the electrochemistry is dominated by the V3+/4+ couple. With a platinum reference wire in contact with the anode, polarization curves are obtained withVOC of 650 mV and current densities of 10 mA cm−2 at 100 mV at 80 °C. These catalysts showed an order of magnitude more activity on the cathode after moderate heat treatment than on the anode,VOC = 750 mV, current densities of 140 mA cm−2 at 100 mV. The temperature dependence of the catalysts was also investigated and showed increasing current densities could be achieved on the anode up to 139 °C and the cathode to 100 °C showing the potential for these materials to work at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号