共查询到20条相似文献,搜索用时 0 毫秒
1.
Rotating fluidized beds in a static geometry are based on the new concept of injecting the fluidization gas tangentially in the fluidization chamber, via multiple gas inlet slots in its cylindrical outer wall. The tangential injection of the fluidization gas fluidizes the particles tangentially and induces a rotating motion, generating a centrifugal field. Radial fluidization of the particle bed is created by introducing a radially inwards motion of the fluidization gas, towards a centrally positioned chimney. Correctly balancing the centrifugal force and the radial gas-solid drag force requires an optimization of the fluidization chamber design for each given type of particles. Solids feeding and removal can be continuous, via one of the end plates of the fluidization chamber.The fluidization behavior of both large diameter, low density polymer particles and small diameter, higher density salt particles is investigated at different solids loadings in a 24 cm diameter, 13.5 cm long non-optimized fluidization chamber. Scale-up to a 36 cm diameter fluidization chamber is illustrated.Provided that the solids loading is sufficiently high, a stable rotating fluidized bed in a static geometry is obtained. This requires to minimize the solids losses via the chimney. With the polymer particles, a dense and uniform bed is observed, whereas with the salt particles a less dense and less uniform bubbling bed is observed. Solids losses via the chimney are much more pronounced with the salt than with the polymer particles.Slugging and channeling occur at too low solids loadings. The hydrostatic gas phase pressure profiles along the outer cylindrical wall of the fluidization chamber are a good indicator of the particle bed uniformity and of channeling and slugging. The fluidization gas flow rate has only a minor effect on the occurrence of channeling and slugging, the solids loading in the fluidization chamber being the determining factor for obtaining a stable and uniform rotating fluidized bed in a static geometry. 相似文献
2.
3.
A phenomenological model was developed to predict heat transfer to tubes located in the freeboard region of gas fluidized beds. The model is concerned with the conductive/convective mechanism of heat transfer. For high temperature applications, an additional contribution by thermal radiation would need to be incorporated. The model considers that the tube surface experiences alternating contact with a dense emulsion phase and a lean void phase. Contributions by dense and lean phases are represented by transient conduction and convection mechanisms, respectively. Particletube contact information was obtained experimentally for a wide range of operating conditions at room temperature and pressure. Predictions of the model were compared with measured heat transfer coefficients. Over a 20-fold range in magnitudes of heat transfer coefficients, the model successfully predicted the measured values with an average deviation of 44 percent. 相似文献
4.
Heat transfer coefficients between the bed and an immersed horizontal tube in the grid-region of a shallow gas-solid fluidized bed were experimentally and theoretically studied. Experiments were carried out in two fluidized bed columns with inside diameters of 88 and 137 mm, respectively. The fluidized particles tested were sand, limestone and glass beads. Experimental parameters also included particle size, superficial gas velocity, tube diameter, tube location and distributor design. A mechanistic model considering the contributions of jet phase, emulsion phase and dead phase was derived for estimating the grid-region heat transfer coefficients. Most of the model predictions were found to be within 25% of the experimentally observed data. 相似文献
5.
Hideya Nakamura 《Chemical engineering science》2007,62(11):3043-3056
This paper describes the numerical analysis of particle mixing in a rotating fluidized bed (RFB). A two-dimensional discrete element method (DEM) and computational fluid dynamics (CFD) coupling model were proposed to analyze the radial particle mixing in the RFB. Spherical polyethylene particles (Geldart group B particles) were used as model particles under the assumptions that they were cohesionless and mono-disperse with their diameter of 0.5 mm.The validity of the proposed model was confirmed by the comparison between the calculated degree of particle mixing and the experimental one, which was obtained by measuring the lightness of the recorded image taken by a high-speed video camera. Effects of the operating parameters (gas velocity, centrifugal acceleration, particle bed height, and vessel radius) on the radial particle mixing rate were numerically analyzed. The radial particle mixing rate was found to be strongly affected by the bubble characteristics, especially by the bubble size. The mathematical model for the rate coefficient of particle mixing as functions of operating parameters was empirically proposed. The radial particle mixing rate in a RFB could be well correlated by the three dimensionless numbers: dimensionless acceleration (Ac), bubble Froude number (Frb), and dimensionless radius on the surface of particle bed (βs). 相似文献
6.
7.
在二维流化床(240mm×80mm)中,以平均粒径dp为1.83mm的玻璃珠为物料,研究了振动流化床与浸没水平管间传热规律;考察了流化数、振动频率、床高、水平管管径等因素对平均传热系数的影响。采用自制探头对浸没加热管束和振动流化床层间平均传热系数进行实验测定,利用颗粒团模型,建立了振动流化床层与浸没水平管间平均传热模型,并对平均传热系数的理论预测值与实验测定值进行了比较。结果表明:计算值与实验值吻合较好,误差在±15%范围内。在较高流化数、低振动频率时,实验值处于理论值上方;随着振动频率、管径增大,平均传热系数实验值逐渐趋于理论预测值甚至低于理论预测值。结果可为带浸没水平管的振动流化床设计和研究提供参考。 相似文献
8.
Numerical results for a gas-fluidized bed using a 2D Eulerian model including the kinetic theory for the particulate phase were provided. The circulation patterns for various operating conditions were discussed. Modeling parameters of drag function, algebraic and transport equations of granular temperature, frictional stress model, turbulent model and discretization scheme were investigated for a bed with different gas distributors and a slotted draft tube. CFD results showed that the drag model is an important hydrodynamics parameter for gas-fluidized beds with various gas distributors. Transport and algebraic equations for granular temperature should be utilized, respectively, for beds including partial and complete sparging at Ug = 2.18 m/s. Frictional stresses play an important role for the beds containing partial sparging with and without draft tube. Discretization schemes should be examined to achieve better results. The Simonin and k-ε turbulent models can improve the CFD results at high gas velocities. Considering perforated plate distributor improves the results. 相似文献
9.
Hideya Nakamura 《Powder Technology》2008,183(3):324-332
The fluidization behavior of the three kinds of nano-particles (TiO2, SiO2, Al2O3) was analyzed in a rotating fluidized bed (RFB). Bed pressure drop, minimum fluidization velocity, bed expansion, entrainment and particle mixing characteristics under various centrifugal accelerations were experimentally investigated. The effects of centrifugal acceleration on agglomerate size and density were analyzed based on a Richardson-Zaki approach coupled with a fractal model.The bed pressure drop behavior showed almost similar to that of A or B-particles of Geldart's classification. Dimensionless particle bed height became smaller when the centrifugal acceleration was larger. Size of agglomerate decreased and its density increased with an increase in centrifugal acceleration. The agglomerate size in the RFB showed smaller than that in other types of fluidized bed system such as vibration and magnetic field as well as in a conventional fluidized bed, and the agglomerate density became larger. Particle entrainment became smaller in the case of the higher centrifugal acceleration. These results confirmed that the RFB can reduce the size of a nano-particle agglomerate and fluidize nano-particles at high gas velocity without any significant entrainment. The RFB is thus expected as more effective gas-solid fluidization system for handling of a large amount of nano-particles than other types of fluidized bed. 相似文献
10.
The concept of temperature penetration depth is used to investigate the heat transfer behavior near the wall of fluidized beds, according to the cluster-based approach. The process of heat transfer through clusters which exist adjacent to the wall was viewed in context of partial and total heat penetration. In the case of partial heat penetration, the heat flux applied to the wall side of the clusters has not reached its bed-side, while in the case of total heat penetration the heat flux has completely crossed the cluster, and the temperature of its bed-side would differ from the bed temperature. Based on the heat balance equation inside the cluster, two different expressions were derived for heat transfer coefficient for each penetration period. The predictions of the proposed model are in close agreement with experimental values and to some extent better than existing models. 相似文献
11.
Effects of the particle-particle heat transfer in a gas-solid turbulent flow in a riser were evaluated. An Eulerian/Lagrangian four-way interaction formulation including the particle collisions in conjunction with the k − τ and the kθ − τθ model equations were used in the numerical simulation. Inter-particles and particle-wall interactions were accounted for with an inelastic collision model, where the restitution coefficient was evaluated for each collision. The special case when the flow initially contains two groups of hot and cold particles was treated in details. Particular attention was given to the nature of heat transfer to particles due to inter-particle interactions. The results showed that the effect of particle-particle heat transfer was more significant for smaller sizes, lower flow Reynolds numbers, and for higher loading ratios. Solid thermal properties, however, did not have a noticeable effect on the inter-particle heat transfer. The simulation results indicates that although the heat transferred to each group of hot and cold particles was significant, the mean values of gas and particle temperatures and suspension heat transfer was insensitive to the inter-particle heat transfer. 相似文献
12.
Investigation of the heat transfer intensification mechanism for a new fluidized catalyst cooler
下载免费PDF全文

Xiuying Yao Yongmin Zhang Chunxi Lu Xiao Han 《American Institute of Chemical Engineers》2015,61(8):2415-2427
A small cold model was employed to investigate the heat‐transfer mechanism for a new fluidized catalyst cooler. Local heat‐transfer coefficients (h) and tube surface hydrodynamics were systematically measured by a specially designed heat tube and an optical fiber probe. The higher total h further validated the feasibility of the heat transfer intensification method used in the new catalyst cooler, which indicated that the induced higher packet renewal frequency due to the nonuniform gas distribution played a dominant role in its increased hs. Strongest heat transfer intensification effect was located at r/Rw>0.8 below the heat transfer intensification height. The changes of the mean packet residence time in the radial and axial directions and with superficial gas velocity were all agreeable with the measured hs according to the packet renewal theory. This further demonstrated the feasibility of the experimental method for tube surface hydrodynamics. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2415–2427, 2015 相似文献
13.
Heat transfer coefficients to a liquid-solid fluidized bed in a cylindrical tube have been measured using water as liquid phase and three types of cylindrical steel particles, as well as glass, nickel, copper and lead spheres of different sizes as solid phase. The independent varaibles included heat flux, liquid velocity and particle physical properties. The experimental results as well as a data bank containing a large number of measured heat transfer coefficients for solid-liquid fluidization over a wide range of operational parameters have been compared with the predictions of most published correlations. A model for the prediction of heat transfer coefficients is proposed which predicts the present experimental data and the data of other investigators with good accuracy. 相似文献
14.
A new correlation is proposed for the heat transfer coefficient between an immersed horizontal tube and very shallow fluidized beds (static bed heights of 10-40 mm). The correlation is based upon experimental data obtained in this work for a horizontal tube with an outside diameter of 13.1 mm, immersed in beds of spherical alumina particles with mean particle sizes of 335-1261 microns. The maximum bed pressure drop was 92.5 mm water. The effects of tube elevation, static bed height and distributor design were investigated. Nine different distributors were used, with maximum pressure drops ranging from 3 to 800 mm water and open areas from 2.2 to 36%. A comparison between the proposed correlation and data reported in the literature showed an agreement of approximately ±10%. 相似文献
15.
垂直管内三相流化床沸腾传热特性 总被引:14,自引:1,他引:14
研究了三相流化床沸腾传热的特性和影响传热系数的诸因素。在传热过程中,由于固体粒子的存在,强化了传热。以玻璃球粒子为固相的三相流化床沸腾传热系数,是相同条件下汽液两相流沸腾传热的二倍。以铜粒子为固相的三相流化床沸腾传热系数,是相同条件下汽液两相流沸腾传热系数的3倍。 相似文献
16.
The concept and use of a rotating chimney for compressing rotating fluidized beds is theoretically and experimentally studied. A rotating chimney is shown to drastically increase the operating flexibility of rotating fluidized beds and to allow a significant improvement of the particle bed uniformity. In particular, the rate of solids losses via the chimney can be reduced and bubbling can be suppressed by compressing the rotating particle bed. 相似文献
17.
Three-dimensional numerical simulations of a horizontal rotating fluidized bed (RFB) containing glass bead particles (ds = 82 μm, ρs = 2450 kg/m3) and washed alumina (ds = 89 μm, ρs = 1550 kg/m3) were performed. FLUENT 6.1 software was used to carry out our simulation. The numerical results were compared with the experimental data of Qian and Pfeffer et al. [G.H. Qian, I. Bagyi, I.W. Burdick, R. Pfeffer, H. Shaw, Gas-Solid Fluidization in a Centrifugal Field.” AIChE J. 47 (5) (2001) 1022-1034]. The rotating speed of the RFB was set at 325 rpm (34 rad/s), which is equivalent to a centrifugal acceleration of 7 g.The flow behavior of the solid particles was analyzed; the bed thickness and the calculated pressure drop were compared with the experimental results. Our calculated pressure drop agreed very well with the experimental results. 相似文献
18.
Bed-to-wall heat transfer was measured in three-phase fluidized beds under conditions typical of biochemical process applications. The thermal resistance of the fluidized bed, which was significant in the absence of gas, became negligible when gas was introduced. Decreasing the particle density at constant gas and liquid velocity increased the bed-to-wall heat transfer coefficient. Previously published heat transfer correlations were used and gave poor predictions of our data. A new correlation was developed which predicted very well all the heat transfer coefficient results in this paper. 相似文献
19.
为了深入研究振动流化床浸没水平管的传热特性,分别以沙子和玉米细颗粒作为实验物料,用水平探头测定了振动流化床中这2种床层颗粒与浸没水平管间的传热系数,分析了操作气速、振动频率、空气进口温度等因素对传热过程的影响。结果表明:在低气速下,振动是影响振动流化床中传热的主要因素,振动的引入可以明显改善流化作用,可以在低气速下得到较好的传热效果,同时达到节能的效果。通过分析实验结果,建立了振动流化床的传热关联式,模型计算值与实测值能较好吻合。研究结果可为干燥膏状物料时确定适宜的操作参数提供参考。 相似文献
20.
A three-dimensional model is proposed for both furnace-side and wall-side heat transfer in circulating fluidized beds with membrane walls. Following previous publications (Int. J. Heat Mass Transfer (2003a, b)), a core-annulus flow structure is employed in the model, with consideration of the membrane wall influence on bed hydrodynamics. The model couples radiation, conduction and convection on the furnace side to conduction and convection on the wall side. Radiation in the wall layer is simulated by the moment method. A finite-element method is employed to solve the set of non-linear, partial differential equations. The solution is demonstrated for a typical example. The model gives predictions of suspension-to-wall heat transfer which show satisfactory agreement with published experimental data. 相似文献