首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An experimental investigation of various flow regimes observed during the extrusion of a polypropylene melt through a flat coat‐hanger die by laser‐Doppler velocimetry (LDV) is presented. LDV measurements of the velocity profiles across the gap of the die at various locations along the die reveal three different extrusion regimes. At small wall shear stresses, the velocity profiles can be fitted by symmetrical curves with the velocities becoming zero at the die walls. These profiles are not uniformly distributed along the die. An increase of the wall shear stress reveals a second flow regime characterized by a uniform distribution of the velocity profiles along the die. As the wall shear stress is increased even further, a third flow regime characterized by wall slip on the glass windows is observed. This flow regime is systematically characterized by measurements of the slip velocities at various temperatures and throughputs. The maximum velocities along the die are taken to assess the uniformity of flow which decisively influences the thickness of the extruded film. By measuring velocity profiles, at different throughput, and temperatures, the conditions for constant velocities along the die were determined. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

2.
Previous work has elucidated that the wall slip velocity and viscosity of polymer melts influence the thickness uniformity of blown film. The present study investigates the effects of the stress dependence of wall slip, the shear thinning and the density on the uniformity. We have prepared high‐density polyethylenes with a variety of molecular weight distributions, which have different rheological properties. Examination of the thickness uniformity of their blown film has shown that the uniformity is correlated with wall slip velocity, the stress dependence of the velocity, melt viscosity, shear thinning and density; the coefficient of the correlation is determined to be 0.990. The reason why the stress dependence of wall slip and the shear thinning affect the uniformity is explained in terms of polymer melt flow behavior in a die, while the effect of density is interpreted considering bubble fluctuation in the blow‐up process. Polym. Eng. Sci. 44:965–972, 2004. © 2004 Society of Plastics Engineers.  相似文献   

3.
This article investigates the radial extrudate swell and velocity profiles of polystyrene melt in a capillary die of a constant shear‐rate extrusion rheometer, using a parallel coextrusion technique. An electro‐magnetized capillary die was used to monitor the changes in the radial extrudate swell profiles of the melt, which is relatively novel in polymer processing. The magnetic flux density applied to the capillary die was varied in a parallel direction to the melt flow, and all tests were performed under the critical condition at which sharkskin and melt fracture did not occur in the normal die. The experimental results suggest that the overall extrudate swell for all shear rates increased with increasing magnetic flux density to a maximum value and then decreased at higher densities. The maximum swelling peak of the melt appeared to shift to higher magnetic flux density, and the value of the maximum swell decreased with increasing wall shear rate and die temperature. The effect of magnetic torque on the extrudate swell ratio of PS melt was more pronounced when extruding the melt at low shear rates and low die temperatures. For radial extrudate swell and velocity profiles, the radial swell ratio for a given shear rate decreased with increasing r/R position. There were two regions where the changes in the extrudate swell ratio across the die diameter were obvious with changing magnetic torque and shear rate, one around the duct center and the other around r/R of 0.65–0.85. The changes in the extrudate swell profiles across the die diameter were associated with, and can be explained using, the melt velocity profiles generated during the flow. In summary, the changes in the overall extrudate swell ratio of PS melt in a capillary die were influenced more by the swelling of the melt around the center of the die. Polym. Eng. Sci. 44:2298–2307, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
The slip velocity and frictional or slip heating of linear‐low density polyethylene with a fluoropolymer processing aid in capillary flow were measured by rheo‐particle image velocimetry and thermal imaging. The pure polymer did not show slip before the stick‐slip regime but exhibited strong slip when blended with the processing additive. However, for shear stresses beyond the stick‐slip regime, the pure polymer and the blend exhibited the same flow behavior with slip. The slip velocity increased with the shear stress at two different rates before and after the stick‐slip and the contribution of slip to the total flow rate exhibited a minimum. Significant rises in temperature were measured under slip and no slip conditions, being these much higher than the values predicted by the adiabatic flow assumption. Clear difference was made between viscous and frictional heating before the stick‐slip regime, even though they could not be distinguished from one another at higher stresses. Overall, in the presence of slip, frictional and viscous heating act synergistically producing higher temperature rises in the melt. Finally, in contrast to predictions by numerical simulations of viscous heating, measured velocity profiles did not evidence the heating effects in the shear stress range analyzed in this work. POLYM. ENG. SCI., 56:837–845, 2016. © 2016 Society of Plastics Engineers  相似文献   

5.
6.
This article proposes a new experimental technique to simultaneously measure radial die swell and velocity profiles of polystyrene melt flowing in the capillary die of a constant shear rate rheometer. The proposed technique was based on parallel coextrusion of colored melt‐layers into uncolored melt‐stream from the barrel into and out of the capillary die. The size (thickness) ratio of the generated melt layers flowing in and out of the die was monitored to produce the extrudate swell ratio for any given radial position across the die diameter. The radial velocity profiles of the melt were measured by introducing relatively light and small particles into the melt layers, and the times taken for the particles to travel for a given distance were measured. The proposed experimental technique was found to be both very simple and useful for the simultaneous and accurate measurement of radial die swell and velocity profiles of highly viscous fluids in an extrusion process. The variations in radial die swell profiles were explained in terms of changes in melt velocity, shear rate, and residence time at radial positions across the die. The radial die swell and velocity profiles for PS melt determined experimentally in this work were accurate to 92.2% and 90.8%, respectively. The overall die swell ratio of the melt ranged from 1.25 to 1.38. The overall die swell ratio was found to increase with increasing piston speed (shear rate). The radial extrudate swell profiles could not be reasoned by the shear rate change, but were closely linked with the development of the velocity profiles of the melt in the die. The die swell ratio was high at the center (~1.9) and low (~0.9) near the die wall. The die swell ratio at the center of the die reduced slightly as the piston speed was increased. Polym. Eng. Sci. 44:1960–1969, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
The shear viscosity of polymethylmethacrylate (PMMA) melt is particularly investigated by using a twin‐bore capillary rheometer at four temperatures of 210, 225, 240, and 255°C with different capillary dies. Experimental results show that the geometrical dependence of shear viscosity is significantly dependent on melt pressure as well as melt temperature. The measured shear viscosity increases with the decrease of die diameter at lower temperatures (210 and 225°C) but decreases with the decrease of die diameter at higher temperatures (240 and 255°C). Based on the deviation of shear viscosity curves and Mooney method, negative slip velocity is obtained at low temperatures and positive slip velocity is obtained at high temperatures, respectively. Geometrical dependence and pressure sensitivity of shear viscosity as well as temperature effect are emphasized for this viscosity deviation. Moreover, shear viscosity curve at 210°C deviates from the power law model above a critical pressure and then becomes less thinning. Mechanisms of the negative slip velocity at low temperatures are explored through Doolittle viscosity model and Barus equation, in which the pressure drop is used to obtain the pressure coefficient by curve fitting. Dependence of pressure coefficient on melt temperature suggests that the pressure sensitivity of shear viscosity is significantly affected by temperature. Geometrical dependence of shear viscosity can be somewhat weakened by increasing melt temperature. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3384–3394, 2013  相似文献   

8.
The shear viscosity, extensional viscosity, and die swell of the PTT melt were investigated using a capillary rheometer. The results showed that the PTT melt was a typical pseudoplastic fluid exhibiting shear thinning and extensional thinning phenomena in capillary flow. There existed no melt fracture phenomenon in the PTT melt through a capillary die even though the shear rate was 20,000 s?1. Increasing the shear rate would decrease the flow activation energy and decline the sensitivity of the shear viscosity to the melt temperature. The molecular weight had a significant influence on the flow curve. The flow behavior of the PTT melt approached that of Newtonian fluid even though the weight‐molecular weight was below 43,000 s?1 at 260°C. The extensional viscosity decreased with the increase of the extensional stress, which became more obvious with increasing the molecular weight. The sensitiveness of the extensional viscosity to the melt temperature decreased promptly along with increasing the extensional strain rate. The die swell ratio and end effect would increase along with increasing the shear rate and with decreasing the temperature, which represented that the increase of the shear rate and the decrease of temperature would increase the extruding elasticity of the PTT melt in the capillary die. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 705–709, 2005  相似文献   

9.
During the die flow of metallocene polyethylenes, flow instabilities may occur. Namely, wall slip, “sharkskin,” and stick‐slip (pressure oscillations) and gross fracture may be obtained depending on the volume flow rate and die geometry. It was reported that fluoroelastomers and boron nitride powders with hexagonal crystal structure can be used as suitable processing aids in melt extrusion processes. Fluoroelastomers at low concentrations act as die lubricants and may eliminate flow instabilities such as surface and stick‐slip melt fracture. On the other hand, specific boron nitride powders may not only eliminate surface and stick‐slip melt fracture, but also postpone gross melt fracture to higher volume flow rates. In this paper, a way for quantitative differentiation of the influence of polymer processing additives on rheological behavior is shown. Standard material functions show no clear‐cut differences. However, using multi‐wave oscillations with higher strain amplitudes make a quantitative assessment possible. Polym. Eng. Sci. 44:2047–2051, 2004. © 2004 Society of Plastics Engineers.  相似文献   

10.
We present results of a study on the stick‐slip phenomenon observed for two linear polyethylenes (HDPE and LLDPE). Experiments were carried out in a single screw extruder using dies of different diameters and L/D ratios. The pressure and the mass flow rate have been measured simultaneously and the instant mass flow rate was determined using laser Doppler velocimetry. Our results clearly confirm the hypothesis that the flow jumps from one stable branch to the other during oscillations as suggested in the literature. The role of the melt compressibility in the reservoir is also established. The effect of the average mass flow rate imposed by the extruder QIN on the respective compression and decompression phases is in good agreement with effect predicted by the mass balance in the reservoir. We also used different reservoir volumes to confirm that the period of oscillations increases with the compressed melt volume upstream of the die.  相似文献   

11.
In this study, to better reflect the slip effect of Poiseuille flow for polymer melt extruded through a circular tube, a novel unified wall slip model and flow equation based on two phase fluid system were proposed via a purely phenomenological approach. According to the different combinations of boundary conditions and flow parameters, the novel slip model was transformed into other models, such as adsorption–desorption model, entanglement–disentanglement model, lubrication layer model, Z–W model, and no‐slip model. The numerical simulation based on computed fluid dynamics was performed to verify the feasibility of the novel slip model. In the simulations, the radial flow velocity profile, shear rate, and viscosity distribution were obtained for six different models. Moreover, the effect of different slip coefficient combinations for the novel slip model on the radial flow velocity, slip velocity, volumetric flow rate error, and viscosity distribution of melt were also investigated and discussed. Results showed that the novel unified slip model not only incorporated the characteristics of other five models above mentioned, but also well interpreted the reason of simultaneously occurring the sharkskin surface defect and gross melt fracture phenomenon when flow rate of melt was extremely large. POLYM. ENG. SCI., 56:328–341, 2016. © 2015 Society of Plastics Engineers  相似文献   

12.
Abstract

Single screw extruders are used to generate a continuous flow of molten polymer in many industrial polymer processes. The melt velocity profile as extruded is important in determining the properties of the final product and influences process related phenomena such as die swell and the onset of sharkskin. The factors that influence the velocity profile would be expected to be the melt temperature (this affecting the viscosity of the melt), the screw and die geometry, and the output rate from the extruder. In the present work a thermocouple mesh sensor coupled with a cooled stainless tube has been used to determine velocity profiles in melts exiting from the screw of a single screw extruder. The results show that the technique can be used successfully to determine velocity profiles in the extrusion process.

It was found that the main influence on the magnitude of the melt velocity was the extruder screw speed. Melt temperature, and hence melt viscosity, were found to have little effect on the velocity profiles measured. The flow in the centre of the duct was retarded slightly owing to the flow across the screw tip and no rotational component of flow was observed. The velocity profiles measured seemed to be reasonably stable, only small changes being observed in the velocity profiles as the melt flowed along a duct of uniform cross-section, although these changes were limited in nature. Die diameter and length had a limited effect on the velocity profiles generated, although the die entry angle did have a significant effect on the shape of the velocity profile at higher screw speeds.  相似文献   

13.
Abstract

Soft solids undergo stick-slip instability which is characterized by the velocity weakening effect where interfacial shear stress decreases with sliding velocity. Soft solids show the hysteresis of energy release rate (G) during the stick and slip phase of a stick-slip cycle. In the present study, the effect of specimen thickness on G is studied by conducting the direct shear sliding experiments on gelatin hydrogel and glass substrate. Interfacial shear stress and corresponding crack lengths obtained during the slide-hold-slide (SHS) experiments are used to determine G analytically. Significance of specimen thickness, normal stress, gelatin concentration and sliding velocity on the hysteresis of G during a stick-slip cycle is discussed in detail. Increase in the specimen thickness, normal stress and gelatin concentration lead to an increase in the hysteresis of G as well as tendency of stick-slip instability. However, increase in the sliding velocity leads to decrease in hysteresis.  相似文献   

14.
The processing behavior of a number of linear low‐density polyethylenes/low density polyethylene (LLDPE/ LDPE) blends with emphasis on the effects of long chain branches is presented. A Ziegler‐Natta linear low‐density polyethylene was blended with four low‐density polyethylene LDPE's having distinctly different molecular weights. The weight fractions of the LDPEs used in the blends were 1, 5, 10, 20, 50, and 75 wt%. Capillary extrusion reveals that the onset of sharkskin and gross melt fracture are slightly influenced with the addition of LDPE into LLDPE. However, the amplitude of the oscillations in the stick‐slip flow regime was found to scale well with the weight fraction of LDPE. Amounts as low as 1 wt% LDPE have a significant effect on the amplitude of pressure oscillations. These effects are clearly due to the presence of long chain branching (LCB); furthermore, it was observed that the onset of this flow regime was shifted to higher shear rates with increase of LDPE content. On the other hand, shear rheology is not sensitive to detect addition of small levels of LDPE up to 20 wt%. Extensional rheology can detect levels of LDPE as small as 1 wt% only at high Hencky strain rates (typically greater than 5s?1) and only for certain blends, typically those that contain LDPE of high molecular weight. It is suggested that the magnitude of oscillations in the oscillating melt fracture flow regime is a sensitive method capable of detecting low levels of LCB. POLYM. ENG. SCI., 47:1317–1326, 2007. © 2007 Society of Plastics Engineers  相似文献   

15.
The melt fracture instabilities of two broad molecular weight distribution (MWD) high‐density polyethylenes (one Ziegler–Natta and one metallocene HDPEs) are studied as functions of the temperature and geometrical details and type of die (cylindrical, slit, and annular). It is found that sharkskin and other melt fracture phenomena are distinctly different for these resins, despite their almost identical rheology. It is also found that the critical conditions for the onset of various melt fracture phenomena depend significantly on the type of die used for their study. For example, sharkskin melt fracture in slit and capillary extrusion was obtained at much small critical shear stress values compared with those found in annular extrusion. Moreover, the metallocene HDPE shows significant slip at the die wall in the sharkskin flow regime. On the other hand, the Ziegler–Natta HDPE has shown no sign of slip. These differences are discussed on the basis of differences in their MWDs that influence their melt elasticity. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
Wall slip of polymethylmethacrylate (PMMA) was studied on different flow channel surfaces using a rheological slit die and a high pressure capillary rheometer. As die surfaces polished steel, ground steel, and Si doped Diamond like carbon (DLC) were used. A new wall slip model is presented in this paper which assumes a lubricating film between the polymer melt and the die surface. The slip velocity has a power law dependency on wall shear stress. In the double logarithmic plot the wall slip curves are linear and can be parallel shifted to higher values with increasing temperature. The predicted dependencies of the wall slip velocity could be confirmed with experiments conducted with PMMA on polished steel. Furthermore, the die surface influences the flow behavior of PMMA. No wall slip was found on ground steel and on DLC. No complete film could be established by the lubricant on the ground steel die wall. The DLC‐coating exhibits a similar surface roughness and surface energy to polished steel, but the chemical composition is different. It is a metastable form of amorphous carbon containing sp2 and sp³ bonds. As a consequence slip additives have a low ability to bond to this material. POLYM. ENG. SCI., 58:1391–1398, 2018. © 2017 Society of Plastics Engineers  相似文献   

17.
An experimental investigation of the flow behavior of three polypropylene melts with different molecular structures during extrusion through a coat‐hanger die is presented. Two linear and one long‐chain branched material, rheologically characterized in shear and elongation, were investigated. Using laser–Doppler velocimeter measurements of the velocity profiles across the gap height were performed at five various locations along the die. The uniformity of the velocity distribution along the die has been assessed using the maximum velocities v0 of the corresponding velocity profiles across the gap. The velocity distribution along the die changes with throughput and temperature. Regarding the rheological properties, it was found that the power‐law index of the viscosity as a function of shear rate has a decisive influence on the uniformity of flow but that the pronounced strain hardening in elongation typical of the long‐chain branched polypropylene is not reflected by the velocity distribution along the die. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
The oscillating flow behavior of a variety of high-density polyethylene and copolymer samples was studied in a constant displacement rate rheometer. At any plunger velocity, the period of the oscillations decreases linearly with melt depth, suggesting a resonance phenomenon. As plunger velocity is increased, the load waveform changes in a regular manner that indicates a progressive increases in the proportion of each cycle spent on the right-hand branch of the flow curve. Little difference was found in the shear stress at which oscillating flow began for samples differing in molecular weight, molecular weight distribution, and manufacturing process. However, the shear rate at which oscillating flow begins depends, strongly on both molecular weight and distribution. Oscillating flow is shifted to higher shear rates by broadening distribution, reducing molecular weight, increasing temperature, or decreasing the L/D ratio of the capillary.  相似文献   

19.
HDPE及其共混物的挤出压力振荡现象   总被引:4,自引:0,他引:4  
采用恒速型双毛细管流变仪研究高密度聚乙烯及其共混物的压力振荡现象,测量了压力振荡的振幅及频率,计算了熔体在管壁的滑移速率和临界外推滑移长度。结果表明,发生压力振荡时,熔体与毛细管壁的界面出现“时黏时滑”转变。黏界面时,挤出物表面出现“鲨鱼皮”现象;滑界面时,挤出物表面粗糙,类似于无规破裂。随剪切速率的增加,压力振荡的振幅减小,而滑移速率、临界外推滑移长度及振荡频率均有提高。升高挤出温度和采用共混改性都可抑制压力振荡现象。  相似文献   

20.
We have developed an instrumented dual slit die mounted on a twin‐screw extruder. This device allows us to distinguish the predominant flow pattern and calculate the shear viscosity, Cogswell elongational viscosity, and a Mooney wall‐slip velocity. The melt‐down process is also monitored by measuring the screw torque together with temperatures and pressures along the screw barrel. So far, we have seen that many pipe and profile formulations have a predominant plug or slip‐dominated flow behavior in the die, while others can be more sticky. Generally, the sticky highly viscous formulations will be more affected by shear heating effects when exposed to high rates during processing. We also give a detailed discussion, with examples, of how data from the device are to be analyzed and how the correct flow boundary condition is to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号