首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have investigated the mechanical behavior of a composite material consisting of a Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix with 60 vol pct tungsten particles under uniaxial compression over a range of strain rates from 10−4 to 104 s−1. In contrast to the behavior of single-phase metallic glasses, the failure strength of the composite increases with increasing strain rate. The composite shows substantially greater plastic deformation than the unreinforced glass under both quasi-static and dynamic loading. Under quasi-static loading, the composite specimens do not fail even at nominal plastic strains in excess of 30 pct. Under dynamic loading, fracture of the composite specimens is induced by shear bands at plastic strains of approximately 20 to 30 pct. We observed evidence of shear localization in the composite on two distinct length scales. Multiple shear bands with thicknesses less than 1 μm form under both quasi-static and dynamic loading. The large plastic deformation developed in the composite specimens is due to the ability of the tungsten particles both to initiate these shear bands and to restrict their propagation. In addition, the dynamic specimens also show shear bands with thicknesses on the order of 50 μm; the tungsten particles inside these shear bands are extensively deformed. We propose that thermal softening of the tungsten particles results in a lowered constraint for shear band development, leading to earlier failure under dynamic loading.  相似文献   

2.
A Ti50.5Ni24.5Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti50.5Ni24.5Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.  相似文献   

3.
Net-shaped porous Ti-rich Ti51Ni49 alloy with well-controlled porosity, pore size, and pore shape are fabricated by pressing-and-sintering compacts containing fine Ti and Ni powders and coarse NaCl powders. After sintering at 1323 K (1050 °C) for 30 minutes in a high vacuum, the NaCl space holder is removed by evaporation, and the remaining Ti and Ni powders are sintered with about 2.3 vol pct liquid phase. The sintered Ti51Ni49 compacts have porosities of 26, 64, 70, 78, and 85 pct, and no distortion is observed. DSC tests show that the M S temperature and ΔH are about 347 K (74 °C) and 28 J/g, respectively, and that they are almost independent of the porosity and close to those of wrought Ti-rich TiNi alloys. These porous Ti51Ni49 compacts exhibit a homogeneous microstructure, and the compressive properties and porosity are close to those of human bones.  相似文献   

4.
Nbss/Nb3Al in-situ composite with the nominal composition of Nb-16 mol pct Al-1 mol pct B, consisting of bcc niobium solid solution (Nbss) and A15 ordered Nb3Al, was synthesized by arc melting, homogenization annealing, and isothermal forging, and their superplastic deformation behavior was investigated by tensile tests and microstructure observations. Maximum superplastic elongation over 750 pct was obtained at 1573 K and at a strain rate of 1.6 × 10−4 s−1 for as-forged specimens. Phase transformation from Nbss to Nb3Al was observed to occur during superplastic deformation. Dynamic phase transformation during superplastic deformation progresses more quickly than static phase transformation during annealing without applied stress. Dynamic phase transformation is accompanied by phase-boundary migration, which operates as an accommodation process of grain-boundary sliding. Dislocation creep dominates deformation and grain-boundary sliding is inhibited at a high strain rate, while grain-boundary sliding and cavity formation are promoted at a low strain rate because of insufficient accommodation of grain-boundary sliding arising from sluggish dynamic phase transformation. It is concluded that there exists an optimum strain rate that guarantees the grain-boundary sliding and the rapid dynamic phase transformation to achieve maximum superplastic elongation.  相似文献   

5.
A gold alloy with 18 wt pct Cu and 6 wt pct Al undergoes a reversible displacive phase transformation between an incompletely ordered L21 parent phase and a tetragonal product. The characteristics of these transformations were studied using acoustic emission, dilatometry, X-ray diffraction, and metallography. The morphology of the transformation products, the structure of the parent phase, and the generation of significant acoustic emission during the transformations indicate that they are at least quasi-martensitic, if not martensitic, and that this system is an example of a β-phase shape-memory alloy (SMA). The onset temperatures of the transformations depend on the prior thermal history of the sample. The martensite start (M s ) temperature is between 30 °C and 20 °C. The system exhibits hysteresis and will revert to the parent phase when reheated, with an austenite start (A s ) temperature between 55 °C and 80 °C. However, freshly cast or solution-annealed and quenched samples of the alloy do not transform to the tetragonal phase. Aging of such material at temperatures between 30 °C and 200 °C is required before they will manifest the displacive transformation. The “martensite” phase is considerably more resistant to aging-induced stabilization than that of most other SMAs.  相似文献   

6.
The 400°C aged Ti49Ni51 alloy can exhibit the transformation sequence of B2 →r premartensite R-phase →r martensite. In the early aging stage, only the premartensitic transformation is observed due to the Ms point being deeply depressed by the coherent stress of Ti11Ni14 precipitates. In the later aging stage, internal friction peaks associated with premartensitic and martensitic transformations are all observed on both heating and cooling. The sharp peaks associated premartensitic transformation on heating is believed to be related to the “bias” effect of the coherent stress induced by the Ti11Ni14 precipitates. The serrations of internal friction appearing significantly in the temperature around −30 to −80°C are found to be caused by the stress induced accomodation of R-phase or martensite variants, and are not associated with the transformation. The Ti11Ni14 precipitates can enhance the amount of martensite formed by unit of temperature or time during the martensitic transformation.  相似文献   

7.
A CO2 laser has been employed to join binary Ti50Ni50 and Ti49.5Ni50.5 shape-memory alloys (SMAs), with an emphasis on the shape-memory and corrosion characteristics. Experimental results showed that a slightly lowered martensite start (M S) temperature and no deterioration in shape-memory character of both alloys were found after laser welding. The welded Ti50Ni50, with an increased amount of B2 phase in the weld metal (WM), had higher strength and considerably lower elongation than the base metal (BM). Potentiodynamic tests revealed the satisfactory performance of laser-welded Ti50Ni50 in 1.5 M H2SO4 and 1.5 M HNO3 solutions. However, the WM exhibited a significantly higher corrosion rate and a less stable passivity than the BM in artificial saliva. On the other hand, the pseudoelastic behavior of the laser weld was investigated only for the Ti49.5Ni50.5 alloy, to facilitate tension cycling at room temperature. The cyclic deformation of Ti49.5Ni50.5 indicated that the stress required to form stress-induced martensite (σ m) and the permanent residual strain (ε p) were higher after welding at a given number of cycles (N), which were certainly related to the more inhomogeneous nature of the WM.  相似文献   

8.
The high-energy ball-milling method was used for fabricating Ni50Mn36.7In13.3 fine-sized particles. The as-melt polycrystalline Ni50Mn36.7In13.3 alloy exhibits a 14 M modulated martensite structure at room temperature (RT). The atomic pair distribution function analysis together with the differential scanning calorimetry technique proved that the 14 M modulated martensite transformed to a metastable amorphous-like structure after ball milling for 8 hours. Annealing of the ball-milled particles with the amorphous-like phase first led to the crystallization to form a B2 structure at 523 K (250 °C), and then an ordered Heusler L21 structure (with a small tetragonal distortion) at 684 K (411 °C). The annealed particles undergo different structural transitions during cooling, tailored by the atomic arrangements of the high-temperature phase. Low-field thermomagnetization measurements show that the ball-milled particles with the amorphous-like structure or the atomically disordered crystalline structure exhibit a magnetic transition from the paramagnetic-like to the spin-glass state with decreasing temperature, whereas the crystalline particles with the ordered Heusler L21 structure present a ferromagnetic behavior with the Curie temperature T c ≈ 310 K (37 °C).  相似文献   

9.
Different amounts of LiF were added to an Al2O3-4 pct Nb2O5 basic ceramic, as sintering agent. Improved new ceramics were obtained with LiF concentrations varying from 0.25 to 1.50 wt pct and three sintering temperatures of 1573 K, 1623 K, and 1673 K (1300 °C, 1350 °C, and 1400 °C). The addition of 0.5 wt pct LiF yielded the highest densification, 94 pct of the theoretical density, in association with a sintering temperature of 1673 K (1400 °C). Based on X-ray diffraction (XRD), this improvement was due not only to the presence of transformed phases, more precisely Nb3O7F, but also to the absence of LiAl5O8. The preferential interaction of LiF with Nb2O5, instead of Al2O3, contributed to increase the alumina sintering ability by liquid phase formation. Scanning electron microscopy (SEM) results revealed well-connected grains and isolated pores, whereas the chemical composition analysis by energy dispersive energy (EDX) indicated a preferential interaction of fluorine with niobium, in agreement with the results of XRD. It was also observed from thermal analysis that the polyethylene glycol binder burnout temperature increased for all LiF concentrations. This may be related to the formation of hydrogen bridge bonds.  相似文献   

10.
In-situ synchrotron radiation has been used to provide direct analysis of the transformation sequences in TiNi-based shape memory alloys during thermal cycling. The high resolution, narrow peak width Debye–Scherrer diffraction spectra enabled positive identification and quantification of the phase transformation sequences, which is not possible through normal laboratory studies. The results facilitate a clearer understanding of the development and influence of intermediate phases such as R or B19 on sequential martensitic transformations. Ti50.2Ni49.8 transformed predominately via a single-step B2 ↔ B19′ transformation, although evidence of the R phase was found during cooling in every cycle. The martensitic start temperature was depressed by ~0.6 °C per cycle, while the R-phase start temperature was found to be unaffected. Ti50Ni41Cu9 transformed through a two-step B2 ↔ B19 ↔ B19′ sequence, with the B2 → B19 transformation reaching completion prior to the formation of any B19′. The transformation temperatures of Ti50Ni41Cu9 were found to be insensitive to thermal cycling, remaining constant over the studied cycle range.  相似文献   

11.
The shape memory effect (SME), superelasticity (SE), and cyclic deformation behavior of two-phase α/β brasses have been investigated at various temperatures, using tensile tests andin situ optical microscopic observations. The morphology and characteristics of the (thermoelastic) martensitic transformation and the mechanism of the SME are similar to those for single-phase β-brass, but the amount of irrecoverable strain is larger in the two-phase alloys due to plastic deformation of the α particles. After unloading and heating, the slipbands in the discrete a particles remain, whereas the martensite almost disappears; thus, the higher the volume fraction of α particles, the larger the amount of irrecoverable strain. The deformation behavior of alloy A at temperatures above the martensite start (Ms) temperature (with 26 pct α phase) is dominated by deformation of the α phase, so complete SE cannot be obtained after cyclic deformation, both at room temperature and at -40 °C. While in alloy B (containing 15 pct α phase), the deformation behavior is dominated by the formation of stress-induced martensite (SIM). The α particles are deformed before SIM formation on loading at room temperature, but on the contrary, SIM forms before the α particles are deformed on loading at -40 °C (>Ms). Complete SE can be obtained in alloy B after cyclic deformation at room temperature to a given strain but does not occur at -40 °C because the a particles are deformed along with the growth of pre-existing SIM under larger strain during cycling at this temperature.  相似文献   

12.
A Ti-49.8 at. pct Ni alloy was severely deformed at three different temperatures using equal-channel angular extrusion (ECAE). Three deformation temperatures—room temperature (below the martensite finish temperature), 50 °C (below the austenite start temperature), and 150 °C (above the austenite finish temperature)—were selected such that the initial deforming phase (B2 austenite or B19’ martensite) and the initial governing deformation mechanism (martensite reorientation, stress-induced martensitic transformation, or dislocation slip in martensite) would be different. The X-ray analysis results revealed that all processed samples mostly contained a deformed martensitic phase, regardless of the initial deforming phase and the deformation mechanism. Although the martensite start temperature did not change, the austenite start temperature decreased significantly in all deformation conditions, probably because of the effect of the internal stress field caused by the deformed microstructure. All deformation conditions led to an increase in the strength levels and some deterioration of shape-memory characteristics. However, a subsequent low-temperature annealing treatment significantly improved pseudoelastic strain levels while preserving the ultrahigh strength levels. The sample deformed at room temperature followed by the low-temperature annealing resulted in the most promising strength and shape-memory characteristics under compression, such that a 5.3 pct shape-memory strain at a 2200 MPa strength level and a 3.3 pct pseudoelastic strain at a 1900 MPa strength level were achieved. The differences between the strength levels and the shape-memory characteristics after severe deformation at different temperatures were attributed to the different amounts of plastic deformation and the resulting deformation textures, since at each deformation temperature the deformation mechanism was different. It is concluded that the severe marforming using ECAE could easily improve strength levels of NiTi alloys while preserving the shape-memory and pseudoelasticity (PE) characteristics and, thus, improve the thermomechanical fatigue behavior. However, lower deformation temperatures are necessary to hinder formation of macroshear bands, and ECAE angles larger than 90 deg should be used to reduce the amount of strain applied in one pass.  相似文献   

13.
A Cu-15.0 at. pct Sn alloy has been chosen as a model alloy for the study of aging effects in copper-based shape memory alloys. Different thermal aging treatments were carried out to determine the effects of both parent phase and martensite aging on the amount of shape recovery and the characteristic transformation temperaturesM s ,A s , andA f . Aging of the martensite reduces both the amount of shape recovery and the extent of the reverse martensite → parent transformation. High martensite heating rates promote complete shape recovery and reverse transformation while the aging occurring during slow heating can inhibit or prohibit both. But irrespective of the martensite heating rate the transformation temperature hysteresis as given by (M s -A s ) is large for the Cu-15 pct Sn alloy compared to other shape memory alloys exhibiting thermoelastic behavior. On the other hand, some beneficial effects were noted when the Cu-15 pct Sn alloy was aged in the parent phase condition prior to subsequent transformation to martensite. TheM s ,A s , andA f were lowered following prior parent phase aging, possibly because of a change in long range order, but prior parent phase aging was found to diminish the deleterious effect of martensite aging. Both shape recovery and the extent of the reverse martensite → parent transformation are enhanced by prior parent phase aging. The enhancement is greater the higher the aging temperature or the longer the aging time at a given temperature. J. D. STICE, formerly Research Assistant at the University of Illinois  相似文献   

14.
Austenitic specimens of Fe-15 wt pct Ni-0.8 wt pct C were tested in tension at strain rates of 10−4 s−1 and 10−1 s−1 over the temperature range −20°C to 60 °C. The influence of strain rate and temperature on the deformation behavior depended on whether stress-assisted or strain-induced martensitic trans-formation occurred during testing. Under conditions of stress-assisted transformation, the ductility was low and independent of strain rate. However, when strain-induced transformation occurred, the duc-tility increased significantly and the higher strain rate resulted in greater ductility and more transfor-mation. Although the ductility increased continuously with temperature, the amount of strain-induced transformation decreased and no martensite was observed above 40 °C. Microstructural examination showed that the martensite was replaced by intense bands and that these bands contained very fine (111) fcc twins. The twinning resulted in enhanced plasticity by providing an additional mode of deformation as slip became more difficult due to dynamic strain aging at the higher temperature. This study confirms that the substructure following deformation will depend on the proximity of the deformation temperature to theM s σ temperature. At temperatures much greater thanM s σ , austenite twinning will occur, while at temperatures close toM s σ , bcc martensite will form.  相似文献   

15.
Shape memory properties of Ni-Ti based melt-spun ribbons   总被引:1,自引:0,他引:1  
Shape-memory properties of equiatomic NiTi, Ni45Ti50Cu5, and Ni25Ti50Cu25 ribbons made by melt spinning have been studied by temperature inducing the martensitic transformation under constant tensile loads. Recoverable strains above 4 pct can be obtained under ∼100 MPa loads for the NiTi and Ni45Ti50Cu5 ribbons, transforming to B19’ martensite. The B19 martensite is formed in the Ni25Ti50Cu25 ribbon after crystallization, and according to the lowering in transformation strain as Cu content increases, the recoverable strain is close to 2.5 pct for ∼150 MPa load. The transformation temperatures exhibit a linear dependence on the applied stress, which can be quantitatively described by means of a Clausius-Clapeyron type equation. The NiTi and Ni45Ti50Cu5 ribbons exhibited some degree of two-way shape-memory effect (TWSME) after thermomechanical cycling. Texture analyses performed on the different ribbons allow us to better understand the transformation strains obtained in each ribbon. The amounts of shape-memory effect (SME) and nonrecoverable strain shown by the studied ribbons are of the same order as those already observed in bulk materials, which makes melt spinning an ideal substitute to complicated manufacturing processes if really thin samples are needed. However, applicable stresses in melt-spun ribbons are limited by a relatively “premature” brittle fracture caused by irregularities in ribbon thickness.  相似文献   

16.
Nickel-rich β-NiAl alloys, which are potential materials for high-temperature shape-memory alloys, show a thermoelastic martensitic transformation, which produces their shape memory effect. However, the transformation to Ni5Al3 phase during heating of NiAl martensite can interrupt the reversible martensitic transformation; consequently, the shape memory effect in NiAl martensite might not appear after heating. The phase transformation process in binary Ni-(34 to 37)Al martensite was investigated by differential thermal analysis (DTA) method, and we found that the condition of reversible martensitic transformation was not the β → Ni5Al3 transformation, but rather the M → Ni5Al3 transformation occurring at 250 °C to 300 °C. Therefore, the transformation temperature of M → Ni5Al3 determined the highest operating temperature for the shape memory effect. For verifying the critical temperature, the phase transformation process was investigated for eight ternary Ni-33Al-X alloys (X=Cu, Co, Fe, Mn, Cr, Ti, Si, and Nb). Only Ti, Si, and Nb additions were found to be effective in dropping the M s temperature, and they facilitated the shape memory effect in Ni-33Al-X alloys. In particular, the addition of Si and Nb raised the transformation temperature of M → Ni5Al3, a potentially beneficial effect for shape memory at higher temperatures. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

17.
The adiabatic elastic stiffness constants C ij of Ni-Si single-crystal solid-solution alloys of two slightly different compositions, 10.78 and 11.17 at. pct Si, were measured over the temperature range from 20 °C to 900 °C using the rectangular parallelepiped resonance method. The isotropic elastic constants of the polycrystalline ordered intermetallic compound Ni3Si containing 23 at. pct Si were also measured over this temperature range. Values of the C ij for Ni3Si were estimated from the data on the polycrystalline alloy, as well as from published data in the literature on isomorphous ternary ordered intermetallic compounds containing different amounts of Si. Using measured values and previously published data, the stiffness constants of Ni3Ti were estimated; these are the only available data on this alloy. The estimated single-crystal elastic constants of Ni3Si, as well as the experimentally measured bulk modulus, are considerably smaller than published values calculated from first-principles methods. The same is true for the C ij of Ni3Ti, but the discrepancies are smaller.  相似文献   

18.
The change and transition process in transformation kinetics from a nonthermoelastic to a thermoelastic type accompanying an increase in parent phase order in Fe-Pt alloys near the stoichiometric composition Fe3Pt has been investigated, using Fe-23, 24 and 25 at. pct Pt alloys. The thermal hysteresis,M s temperature, martensite tetragonality and transformation volume change have been measured for specimens with various degrees of order, and correlations among these factors are discussed. The results indicate that the martensite tetragonality, or equivalently the.degree of order of the parent phase, is not the dominant factor which dictates a thermoelastic transformation. TheM s tempera-ture appears to play an important role in the transformation kinetics, and must be lower than a certain value to obtain a thermoelastic transformation in Fe-Pt alloys. formerly Research Assistant at the University of Illinois at Urbana-Champaign, Urbana, IL  相似文献   

19.
Shock-impact generated tensile-stress pulses were used to induce B2-to-monoclinic martensitic transformations in two near-equiatomic NiTi alloys having different martensite transformation start (M s ) temperatures. The NiTi-I alloy (M s ≈+27 °C) impacted at room temperature at 2.0 and 2.7 GPa tensile stress-pulse magnitude, showed acicular martensite morphology. These martensite needles had a substructure containing microtwins, typical of “stress-assisted” martensite. The NiTi-II alloy (M s ≈−45 °C) showed no martensite formation when shocked with tensile-stress pulses of 2 GPa. For tensile stresses of 4.1 GPa, the alloy showed spall initiation near the region of maximum tensile-stress duration. In addition, monoclinic martensite needles, with a well-defined dislocation substructure, typical of “strain-induced” martensite, were seen clustering around the spall region. No stress-assisted martensite was formed in this alloy due to its very low M s temperature. The present article documents results of the use of a metallurgical technique for generating large-amplitude tensile stress pulses of finite duration for studies of phase transformations involving changes from a high density to a low density state.  相似文献   

20.
Partial isothermal sections of the Bi-Fe-Ti system at 700 °C and 900 °C were constructed to investigate the reactivity of Fe with Bi-Ti liquid alloy. In the ternary system, three-phase equilibria such as liquid-Fe-Fe2Ti, liquid-Fe2Ti-Bi2FeTi4, and liquid-Bi9Ti8-Bi2FeTi4 were confirmed at both temperatures. The solubility of Fe in liquid Bi at these temperatures is negligibly small. On the other hand, it is notable that the solubility of Fe in liquid Bi containing Ti at 900 °C is much larger and reaches 2.3 mol pct. Then, we measured the electromotive force (emf) between Bi-20 mol pct Ti alloy and pure Ti at 700 °C in equimolar NaCl-KCl where 1 mol pct TiCl2 was added. From the result, the interaction parameter of the liquid phase in the Bi-Ti system and the standard molar Gibbs energies of formation of Bi9Ti8 and Bi2FeTi4 at 700 °C were estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号