共查询到18条相似文献,搜索用时 78 毫秒
1.
为了提高花粉浓度预报的准确率,解决现有花粉浓度预报准确率不高的问题,提出了一种基于粒子群优化(PSO)算法和支持向量机(SVM)的花粉浓度预报模型。首先,综合考虑气温、气温日较差、相对湿度、降水量、风力、日照时数等多种气象要素,选择与花粉浓度相关性较强的气象要素构成特征向量;其次,利用特征向量与花粉浓度数据建立SVM预测模型,并使用PSO算法找出最优参数;然后利用最优参数优化花粉浓度预测模型;最后,使用优化后的模型对花粉未来24 h浓度进行预测,并与未优化的SVM、多元线性回归法(MLR)、反向神经网络(BPNN)作对比。此外使用优化后的模型对某市南郊观象台和密云两个站点进行逐日花粉浓度预测。实验结果表明,相比其他预报方法,所提方法能有效提高花粉浓度未来24 h预测精度,并具有较高的泛化能力。 相似文献
2.
王江荣 《自动化与仪器仪表》2014,(1):93-95
针对钢铁企业对炉龄预测精度要求高的特点,提出了基于二阶粒子群优化的支持向量机的炉龄预测方法。利用粒子群智能算法优化支持向量机的回归参数,可以避免按经验选取输入参数的盲目性,能有效地提高预测速度和精度。实例仿真结果表明用该方法对炉龄预测具有很高的精确度,远优于BP神经网络的预测结果。 相似文献
3.
工程造价预测一直是工程管理研究中的重点,针对工程造价预测中的支持向量机参数优化问题,提出一种改进粒子群算法优化支持向量机的工程造价预测模型(IPSO-SVM).首先收集工程造价数据,并对其进行归一化处理,然后采用支持向量机对工程造价的训练样本进行学习,并采用改进粒子群算法对支持向量机的核函数参数进行优化,最后采用Matlab 2012工具箱对工程造价进行仿真实验.实验结果表明,IPSO-SVM有效提高工程造价的预测精度,预测结果具有一定的实际应用价值. 相似文献
4.
孙瑶琴 《计算机测量与控制》2017,25(3):48-50, 54
支持向量机(SVM)作为当前新型的机器学习方式,凭借解决小样本问题、高维问题和局部极值问题等方面的优越性,在当前故障诊断方面有突出的表现;文章根据对支持向量机的研究,发现其在分类模型参数选择上存在困难,为此,提出利用改进粒子群算法优化的办法,解决粒子群前期收敛速度过快导致后期容易优化不均的现象;通过粒子群算法优化与支持向量机分类模型结合,以轴承故障检测和诊断为例,分析次方法的优越性和提高支持向量机在故障诊断过程中的精准度;通过实际检测得出,这种算法优化的方法改进的支持向量机对于聚类性较差的故障分类具有很好的诊断功能。 相似文献
5.
6.
杨钟瑾 《计算机工程与应用》2013,49(18):265-270
介绍了一种基于粒子群算法和遗传算法优化支持向量机预测破产的方法。这种方法融合了粒子群算法、遗传算法和支持向量机诸多优点,并行地搜寻支持向量机最优的正则化参数和核参数,由此构建优化的预测模型。采用源自UCI机器学习数据库的破产和非破产混合样本数据集,随机地读入数据和进行数据预处理,运用7重交叉校验方法客观地评价预测结果。仿真结果显示,这种方法能自动有效地构建优化的支持向量机,与其他方法比较,具有更强的推广能力和更快的学习速度,而且具有更好的破产预测准确率。 相似文献
7.
8.
改进粒子群算法在支持向量机训练中的应用 总被引:1,自引:0,他引:1
训练支持向量机需要求解二次规划问题,LPSO算法对于求解含线性约束优化问题是一种直观、简单的方法。改进后的LPSO算法较好的解决了早熟收敛问题。对谷氨酸发酵过程建模的实验表明本文提出的方法训练精度高,泛化能力强。 相似文献
9.
基于粒子群优化支持向量机的石油需求预测 总被引:5,自引:2,他引:5
在能源问题的研究中,石油需求的准确预测对于我国经济管理部门制定石油生产与进口计划、安排相关行业生产计划以及调整产业结构具有非常重要意义。为了实现石油需求准确预测,采用实时准确算法,提出基于粒子群优化支持向量机(PSO-SVM)的石油需求预测方法,PSO-SVM中采用粒子群优化算法优化SVM参数,以获得较优的SVM预测模型。并以我国1990~2007年石油需求数据进行测试与分析,计算实验结果表明,在石油需求预测中,PSO-SVM比BP有着更高的预测精度,为实际需求提供依据。 相似文献
10.
11.
基于PSO算法的支持向量机核参数选择问题研究 总被引:2,自引:0,他引:2
核函数中的参数选择是支持向量机中的一个非常重要的问题,它直接影响到模型的推广能力.本文提出了采用粒子群算法搜索支持向量机最优核参数的方法,并在Checker数据集上进行了实验,实验结果表明,通过这种方法选择出来的核参数能够提高分类正确率以及预测正确率,具有一定的实用性. 相似文献
12.
由于支持向量机的主要参数的选择能够在很大程度上影响分类性能和效果,并且目前参数优化缺乏理论指导,提出一种粒子群优化算法以优化支持向量机参数的方法.该方法通过引入非线性递减惯性权值和异步线性变化的学习因子策略来改善标准粒子群算法的后期收敛速度慢、易陷入局部最优的缺陷.实验结果表明,相对于标准粒子群算法,本方法在参数优化方面具有良好的鲁棒性、快速收敛和全局搜索能力,具有更高的分类精确度和效率. 相似文献
13.
基于动态多种群粒子群支持向量机的短期负荷预测 总被引:2,自引:0,他引:2
针对标准粒子群优化(PSO)算法存在易陷入局部极值点的缺点,提出了一种基于物种概念的动态多种群粒子群优化算法(DMPSO).在DMPSO中引入了物种概念,在进化过程中动态确定物种,利用种群多样性信息动态调整物种半径,通过物种对解空间的不同区域进行搜索,最终确定出各极值点.将DMPSO算法和支持向量机(SVM)相结合,形成了解决电力系统短期负荷预测问题的新方法(DMPSO-SVM).在该方法中利用DMPSO算法来优化SVM中的参数,利用快速傅立叶变换(FFT)进行频谱分析并确定SVM的输入量.电力系统短期负荷预测的实际算例表明,与传统预测方法相比,该方法具有更高的预测精度和鲁棒性. 相似文献
14.
15.
为了提高作物需水量预测精度,提出基于粒子群优化算法(PSO)优化最小二乘支持向量机(LS-SVM)的预测模型。该模型以空气湿度、温度、太阳辐射以及风速为输入,利用多项式核函数和径向基核函数的非负线性组合构造核函数,将粒子群优化算法(PSO)与交叉验证方法用于确定模型参数。实验结果表明与神经网络和随机森林相比,PSO优化的LS-SVM可获得更好的预测精度和泛化能力,可用于节水灌溉,具有较高的应用价值。 相似文献
16.
为了准确的预测采空区煤矿煤岩破裂与失稳前岩石所释放出来的声发射信息的位置,并且根据山西焦煤的官地矿16403工作面获得的声发射事件的数据,因为该数据是一个非线性、高维的问题,提出了用PSO和SVM算法相结合的方法在煤矿煤岩声发射定位中的应用进行了研究。以往的方法只是单纯的收集煤岩或岩石声发射信息,以至于定位会出现失准、精度低和误差大的缺点。文章提出了“1+1=1”的定位方法,既收集同一位置的岩石和煤岩体的声发射信号,分析处理后,得到其位置。在煤岩失稳前两者都会发出强烈的信号。仿真结果表明:应用PSO和SVM理论结合的方法进行煤矿煤岩声发射定位的预测,在提高准确性和精确度的同时,也大大的提高了泛化的能力,该方法也大大减小定位失准的误差。 相似文献
17.
为了提高表面肌电信号的遥操作机械手运动模式识别率,设优化支持向量机(IPSO-SVM).该方法首先简化PSO的位置和速度公式,然后提出ESE状态估计策略判断算法的"早熟"收敛,最后对6类手臂运动模式(握拳、展拳、内旋、外旋、屈腕、伸腕)进行分类并与另外4个测试算法的分类结果进行比较.实验结果表明:IPSO-SVM算法的平均准确率为93.75%,而传统SVM算法的平均准确率为70.21%;算法的训练时间和泛化时间都有明显的提高;具有较强的鲁棒性和抗干扰能力.因此IPSO-SVM算法可以很好的解决表面肌电信号的动作模式分类问题,具有很好的应用价值. 相似文献
18.
提出基于改进PSO优化支持向量机的文本分类方法,首先采用向量空间模型对文本特征进行提取,使用互信息对文本特征进行降维,然后提出改进PSO算法,该算法可实现对SVM参数的精确、稳定、快速优化选择,对支持向量机进行训练,使用训练后的分类器对新的文本进行分类,实验结果表明该方法具有良好的分类性能。 相似文献