首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid wear rate of cutting tools due to high cutting temperature is a critical problem to be solved in high-speed machining (HSM) of hardened steels. Near-dry machining such as minimum quantity lubrication (MQL) is regarded as one of the solutions to this difficulty. However, the function of MQL in HSM is still uncertain so far which prevents MQL from widely being utilized in the machining of hardened steels. In this paper, the mechanism of MQL in HSM of hardened steel is investigated more comprehensively. Comparing with dry cutting, the tool performance can be enhanced by MQL under all cutting speeds in this study. It is found that MQL can provide extra oxygen to promote the formation of a protective oxide layer in between the chip–tool interface. This layer is basically quaternary compound oxides of Fe, Mn, Si, and Al, and is proved to act as diffusion barriers effectively. Hence, the strength and wear resistance of a cutting tool can be retained which leads to a significant improvement of tool life. It is found that there exists an optimal cutting speed at which a stable protective oxide layer can be formed. When cutting speed is lower than this speed, there is less oxide layer and the improvement of tool life is less apparent. As the cutting speed is far beyond the optimal value, the protective layer is absent and the thermal cracks are apt to occur at the cutting edge due to large fluctuation of temperature. Resultantly, application of MQL is inappropriate in the extreme high-speed cutting condition irrespective of its little increase in tool life. Based on this study, it is concluded that the tool life can be effectively improved by MQL in HSM of NAK80 hardened steels when cutting parameters are chosen properly.  相似文献   

2.
In milling, burrs are formed on entry and exit edges of the workpiece to be machined like in all material removal processes. In the subsequent production these burrs have to be removed. Understanding the influencing factors and burr formation mechanisms can help to avoid or reduce burrs. Another possibility for saving costs is to reduce the process materials, for example, cutting fluids. This can be realised by using minimum quantity lubrication or dry machining. The investigations show which influence both methods have on burr formation.  相似文献   

3.
This paper describes preliminary results of replacing water-based (aqueous) flood coolant with supercritical CO2-based minimum quantity lubrication (scCO2 MQL) in an external turning operation on an Inconel 750 combustor housing. Two series of tests were performed: the first series to compare tool wear performance observed with aqueous flood coolant and scCO2 MQL under identical machining conditions, and the second series to investigate tool wear performance with scCO2 MQL at higher metal removal rates (MRR) than the MRR used in production practice with aqueous flood coolant. All tests were performed using roughing cuts on unaged Inconel with coated carbide tooling, and vegetable oil lubricant. As a key enabler, special flank jet tool holders were used to eliminate chip blockage of the lubricant stream.In the first series of tests, tool wear was observed to be consistently lower with scCO2 MQL than with the aqueous flood coolant. In the second series of tests, two process conditions were demonstrated for which MRR increased by 25% and 40%, respectively, with scCO2 MQL compared to aqueous flood coolant at equivalent tool life. Notch wear, the limiting factor for tool life under baseline conditions, was reduced for scCO2 MQL, but crater wear and chip hammering were more pronounced. Overall the results indicate that scCO2 MQL can provide increased tool life or material removal rate compared to aqueous flood coolants when machining Inconel 750 and similar nickel alloys by improving lubricity and changing the dominant wear mechanism from rapid notch wear to gradual crater wear and chip hammering. These tests, which involved extended cuts of over 10 min under production conditions, represent an important extension of MQL machining to a hard metal alloy that cannot be machined by conventional MQL methods.  相似文献   

4.
Machining with minimum quantity lubrication (MQL) is state of the art. Previous investigations were, however, concerned with tool optimisation and the surface quality of workpieces as well as coating technology. By now the same or partly better machining results than in conventional cutting with flood lubrication can be achieved due to adjusted tool geometries, workpiece materials and coatings. Tests about burr formation in short hole drilling exist for dry cutting or the machining with emulsion. This paper expands these results to the burr formation in machining with MQL.  相似文献   

5.
This paper investigates critical issues related to high-speed five-axis milling of hardened D2 tool steel (hardness HRc 63). A forging die cavity was designed to represent the typical features in dies and molds and to simulate several effects resulting from complex tool path generation. Cutting tool materials used were coated carbide for the roughing and semi-finishing processes and polycrystalline cubic boron nitride (PCBN) for the finishing process. The effects of complex tool paths on several critical machining issues such as chip morphology, cutting forces, tool wear mechanisms, tool life and surface integrity were also investigated. The main tool failure mode was chipping due to the machine tool dynamics. A five-axis analytical force model that includes the cutter location (CL) data file for computing the chip load has been developed. The effect of instantaneous tilt angle variation on the forces was also included. Verification of the force model has been performed and adopted as a basis for explaining the difficulties involved with high-speed five-axis milling of D2 tool steel.  相似文献   

6.
The application of minimum quantity lubrication (MQL) in grinding has emerged as an alternative for reducing the abundant flow of cutting fluids, thus achieving cleaner production. Although considered an innovative technique in grinding operations, its widespread application is hindered due primarily to the high heat generation and wheel pore clogging caused by machined chips, harming the final product quality and increasing tool wear on the machine. This study sought to improve MQL use in grinding. In addition to the conventional MQL injected at the wheel/workpiece interface, a compressed air jet was used to clean the mixture of MQL oil and machined chips from clogged wheel pores. Experiments were conducted using external cylindrical plunge grinding on AISI 4340 quenched and tempered steel, and a vitrified cubic boron nitrite (CBN) wheel. The cooling-lubrication methods employed were the conventional flood coolant application, MQL (without cleaning), and MQL with a cleaning jet directed at the wheel surface at different angles of incidence. The main goal of these experiments was to verify the viability of replacing the traditional abundant flow of cutting fluid with MQL and wheel cleaning. The analyses were conducted by measuring the following output variables of the process: workpiece surface roughness and roundness errors, diametrical wheel wear, acoustic emission generated by the process, and metallographic images of the ground surface and subsurface. Results show the positive effects of implementing the cleaning jet technique as a technological improvement of minimum quantity lubrication in grinding in order to reduce the usage of cutting fluids. The MQL technique with cleaning compressed air jet, for a specific angle of incidence (30°), proved to be extremely efficient in the improvement of the surface quality and accurate workpiece shape; it also reduced wheel wear when compared to the other cooling-lubrication methods that were tested (without a cleaning jet).  相似文献   

7.
Inconel 718 is a difficult-to-cut nickel-based superalloy commonly used in aerospace industry. This paper presents an experimental study of the tool wear propagation and cutting force variations in the end milling of Inconel 718 with coated carbide inserts. The experimental results showed that significant flank wear was the predominant failure mode affecting the tool life. The tool flank wear propagation in the up milling operations was more rapid than that in the down milling operations. The cutting force variation along with the tool wear propagation was also analysed. While the thermal effects could be a significant cause for the peak force variation within a single cutting pass, the tool wear propagation was believed to be responsible for the gradual increase of the mean peak force in successive cutting passes.  相似文献   

8.
Nowadays, the use of cutting fluids on machining operations has been questioned, due to problems they may cause to the environment, due to damage to human health and also more due to the severe laws regarding industrial waste that have been passed. Therefore, industries are being forced to review the production processes aiming either, at elimination or, when it is not possible, a sharp reduction in the use of these fluids. The technique of minimum volume of oil (MVO) has been studied in machining processes as one alternative to the use of abundant cutting fluid. Research has shown that this technique, which is the pulverisation of a minimum volume of oil in a flow of compressed air, in several cases, reduces tool wear when compared to complete dry cutting, causing the improvement of the workpiece surface quality and an increase in tool life. In this work, the influence of MVO (oil flow of 10 ml/h) in the wear of a cubic boron nitride (CBN) tool, when turning 52100 hardened steel, was studied. Aiming at a comparison of the results, the experiments were also carried out under two other conditions: dry cutting and cutting with abundant soluble oil (wet cutting). During the experiments, the influence of cutting speed on CBN tool wear for the three refrigeration conditions was also checked. Besides this, tool wear and workpiece surface roughness was also measured as cutting time elapsed.  相似文献   

9.
This paper describes the use of induction motor current to monitor tool fracture in end milling operations. The principles of induction motors are studied in this paper to establish the relationship between the motor current and the motor torque. It is shown that the square of the stator current of induction motors is approximately proportional to the motor torque. Since the occurrence of tool fracture will cause variations in the motor torque, measurement of the stator current appears to be an indirect technique for monitoring tool fracture. A sensitivity analysis of the stator current to the occurrence of tool fracture is also reported. Finally, experimental results under varying cutting conditions have been presented to demonstrate the effectiveness of this approach for the detection of tool fracture in end milling operations.  相似文献   

10.
Effect of MQL on the tool life of small twist drills in deep-hole drilling   总被引:9,自引:3,他引:6  
Drilling of deep and small boreholes using twist drills has to be considered as one of the most difficult metal cutting operations. There are many reasons for this, one of them being that the cutting fluid has to be supplied externally. This research work investigates in how far the manner of supplying and the type of minimum quantity lubricant have an effect on the tool life of coated and uncoated high-speed steel twist drills of 1.5 mm diameter. Deep-hole drilling is performed as the holes, drilled into plain carbon steel, had a depth of 10 times the diameter. The feasibility of dry machining as an appropriate alternative to MQL in deep-hole drilling has also been investigated. This work shows that, compared to a continuous supply of the minimum quantity lubricant, a discontinuous supply brings about a significant reduction in tool life, especially in the case of heat-sensitive drills. With respect to the type of minimum quantity lubricant, a low-viscous type with a high cooling-capability gave rise to a notably prolonged tool life. It is also shown that dry drilling is associated with strongly accelerated tool wear for most of the twist drills tested, resulting in a significant reduction in tool life.  相似文献   

11.
Cutting performance of cemented carbide drills with various coatings was investigated in detail under minimum quantity lubrication (MQL) conditions. An advanced dual-channel Bielomatik MQL system was installed in an Okuma machining center. A specially designed Mapal drill was selected for the studies to eliminate voids between the tool and the MQL tool holder that can interfere with mist delivery. Using this design, a mist flow rate of 25 mL/min was achieved through the drills.Progressive frictional/wear studies were performed. Coated drills were tested in three stages (50, 500, and 7000 holes). During short term drilling tests (50-hole level), cutting performance was comprehensively evaluated for a range of coatings by measuring several in-situ frictional characteristics of the cutting process, such as cutting forces, and related characteristics including, chip type and undersurface morphology. Wear patterns of the cutting tools were indentified as well. Selected coatings were tested further. The best cutting performance based on the 500-hole testing was found with the diamond coating. However, excessive brittleness of the entire coating/substrate system led to premature failure of the drill after 4300 holes. The low-hydrogen DLC coating that also showed promising cutting performance based on the 500-hole test was selected as the next candidate for further testing. Drills with low-hydrogen DLC coating achieved 7200 drilled holes with a flank wear of only 110 μm and moderate intensity of workpiece material pickup. This results in a better surface finish of drilled holes.Based on this study, the Mapal drills with the low-hydrogen DLC coating provided comparable machining performance to that possible with traditional wet machining, but with the environmental and cost advantages possible with MQL.  相似文献   

12.
A nanofluid minimum quantity lubrication with addition of one kind of nanoparticle has several limitations, such as grinding of difficult-to-cutting materials. Hybrid nanoparticles integrate the properties of two or more kinds of nanoparticles, thus having better lubrication and heat transfer performances than single nanoparticle additives. However, the use of hybrid nanoparticles in nanofluid minimum quantity lubrication grinding has not been reported. This study aims to determine whether hybrid nanoparticles have better lubrication performance than pure nanoparticle. A hybrid nanofluid consisting of MoS2 nanoparticles with good lubrication effect and CNTs with high heat conductivity coefficient is investigated. The effects of the hybrid nanofluid on grinding force, coefficient of friction, and workpiece surface quality for Ni-based alloy grinding are analyzed. Results show that the MoS2/CNT hybrid nanoparticles achieve better lubrication effect than single nanoparticles. The optimal MoS2/CNT mixing ratio and nanofluid concentration are 2:1 and 6 wt%, respectively.  相似文献   

13.
Surface roughness is one of the most important requirements in machining process. The surface roughness value is a result of the tool wear. When tool wear increase, the surface roughness also increases. The determination of the sufficient cutting parameters is a very important process obtained by means of both minimum surface roughness values and long tool life. The statistical models were developed to predict the surface roughness.This paper presents the development of a statistical model for surface roughness estimation in a high-speed flat end milling process under wet cutting conditions, using machining variables such as spindle speed, feed rate, depth of cut, and step over. First- and second-order models were developed using experimental results of a rotatable central composite design, and assessed by means of various statistical tests. The highest coefficient of correlation (Radj2) (88%) was obtained with a 10-parameter second-order model. Meanwhile, a time trend was observed in residual values between model predictions and experimental data, reflecting the probable effect of the tool wear on surface roughness. Thus, in order to enhance the estimation capability of the model, another independent variable was included into the model to account for the effect of the tool wear, and the total operating time of the tool was selected as the most suitable variable for this purpose. By inserting this new variable as a linear term into the model, Radj2 was increased to 94% and a good fit was observed between the model predictions and supplementary experimental data.In this study, it was observed that, the order of significance of the main variables is as X5>X3>X4>X1>X2 (total machining time, depth of cut, step over, spindle speed and feed rate, respectively).  相似文献   

14.
Failure patterns of coated carbide tool were investigated by high-speed face milling of the hardened steel SKD11. Tool failure surface morphology, cutting force and machined surface roughness were also analyzed to reveal the failure mechanisms. The results indicated that the dominant failure pattern of coated carbide tool was breakage. The primary mechanism of tool breakage was fatigue fracture. Under different cutting speeds, the distinctive morphologies of fatigue fracture were presented on the failure surfaces. At low cutting speeds, many fatigue sources were observed on the rake face. The distance between fatigue sources and tool nose was approximately two times of the depth of cut. With the increase of cutting speed, the fatigue striations and riven patterns were observed at the fracture surface. In addition, the fatigue steps and crack deflection were found under high cutting speeds. The main fracture mode was intergranular fracture at lower cutting speeds. However, it was transgranular fracture at higher cutting speeds. Furthermore, the irregular fracture surfaces at low cutting speeds and at high cutting speeds contribute to a larger cutting force increment compared with the medium cutting speeds. The increment of surface roughness in the initial and severe wear stages was lower than that in the steady wear stage, while the deviation of surface roughness was relatively large.  相似文献   

15.
This study presents a compensation method in milling machining in order to take into account tool deflection during tool-path generation. Tool deflection that occurs during machining, and especially when flexible tools such as end mills are used, can result in dimensional errors on workpieces. The study presented here is part two of a two-part paper. In part one the cutting force models and the surface prediction method have been presented.Here the focus is on tool deflection effects' integration during the generation of the tool path. A strategy is proposed that modifies the nominal tool trajectory, compensates for the machining errors due to tool deflection, without degrading the production performance and the machined accuracy. The methodology allows optimization of the tool path trajectory in order to achieved a specified tolerance. Some experimental results are presented.  相似文献   

16.
In this study, the relationship between vibration and tool wear was investigated during end milling. For this purpose, a series of experiment were conducted in a vertical milling machine. An indexable CBN insert and AISI D3 cold work tool steel hardened to 35 HRC were used as material twin in the experiments. The vibration was measured only in the machining direction, which has more dominant signals than in the other two directions. The measurements were taken by using an acceleration sensor assembled on a machinery analyzer. Tool wear was measured by a toolmaker's microscope. It was observed that there was an increase in vibration amplitude with increasing tool wears. This situation was evident especially by monitoring vibration of displacement type. It was also observed that the first three multiplies of tooth passing frequency (1×, 2×, 3×) gave the best information about the tool wear. Results showed that there was no considerable increase in the vibration amplitude until a flank wear value of 160 μm was reached, above which the vibration amplitude increased significantly.  相似文献   

17.
End milling of die/mold steels is a highly demanding operation because of the temperatures and stresses generated on the cutting tool due to high workpiece hardness. Modeling and simulation of cutting processes have the potential for improving cutting tool designs and selecting optimum conditions, especially in advanced applications such as high-speed milling. The main objective of this study was to develop a methodology for simulating the cutting process in flat end milling operation and predicting chip flow, cutting forces, tool stresses and temperatures using finite element analysis (FEA). As an application, machining of P-20 mold steel at 30 HRC hardness using uncoated carbide tooling was investigated. Using the commercially available software DEFORM-2D™, previously developed flow stress data of the workpiece material and friction at the chip–tool contact at high deformation rates and temperatures were used. A modular representation of undeformed chip geometry was used by utilizing plane strain and axisymmetric workpiece deformation models in order to predict chip formation at the primary and secondary cutting edges of the flat end milling insert. Dry machining experiments for slot milling were conducted using single insert flat end mills with a straight cutting edge (i.e. null helix angle). Comparisons of predicted cutting forces with the measured forces showed reasonable agreement and indicate that the tool stresses and temperatures are also predicted with acceptable accuracy. The highest tool temperatures were predicted at the primary cutting edge of the flat end mill insert regardless of cutting conditions. These temperatures increase wear development at the primary cutting edge. However, the highest tool stresses were predicted at the secondary (around corner radius) cutting edge.  相似文献   

18.
Tools deflection that occurs during machining, and especially when flexible tools such as end mills are used, can result in dimensional errors on workpieces. The study presented here is part one of a two-part paper: it deals with the estimation of cutting forces and the prediction of milled surface. The second part will focus on a methodology that allows to optimize the production rate by compensating the deflection and meeting the part tolerance.Cutting force models have been and are still the subject of a lot of research. The model used is based on Kline and Devor's [5]: a polynomial approximation whose coefficients are obtained by least square methodology is used for the calculation of cutting forces. The machined surface (two axis machining) is determined using the contact point methodology and some experimental tests are done to validate the models.  相似文献   

19.
Titanium alloy is widely used in the aerospace industry for applications requiring high strength at elevated temperature and high mechanical resistance. The difficulty of dislocation motion through the microstructure is responsible for its high yield strength. However, the main problems encountered when machining titanium alloy are the low material removal rate and the short tool life.This study investigated the suitability of uncoated cemented carbide tools in ball-end milling of the aerospace titanium alloy Ti-6242S. The experiments were carried out under dry cutting condition. Cutting speeds in the range of 60–150 m/min were considered. The axial and radial depths of cut were kept constant at 2.0 and 8.8 mm, respectively, and the feed rate values of 0.1 and 0.15 mm/tooth were selected. SEM analysis has been carried out on the worn tools and shows that flank wear and excessive chipping on the flank edge are the main tool failure modes. For both feed rates, the results demonstrate that the higher the cutting speed the better is the surface finish. The FEM simulation provides good results on modelling of chip formation and can be helpful to calculate the contact parameters and to understand the tool wear mechanisms when dry machining aerospace titanium alloys.  相似文献   

20.
Automated tool condition monitoring is an important issue in the advanced machining process. Permutation entropy of a time series is a simple, robust and extremely fast complexity measure method for distinguishing the different conditions of a physical system. In this study, the permutation entropy of feed-motor current signals in end milling was applied to detect tool breakage. The detection method is composed of the estimation of permutation entropy and wavelet-based de-noising. To confirm the effectiveness and robustness of the method, typical experiments have been performed from the cutter runout and entry/exit cuts to cutting parameters variation. Results showed that the new method could successfully extract significant signature from the feed-motor current signals to effectively detect tool flute breakage during end milling. Whilst, this detection method was based on current sensors, so it possesses excellent potential for practical and real-time application at a low cost by comparison with the alternative sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号