首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
运用量子化学计算理论,求出了有关化合物的热化学参数,并根据有关热力学模型,计算了金属间化合物Ti2AlNb中元素的活度,由此计算了SCS-6 SiC长纤维增强Ti2AlNb金属间化合物复合材料界面反应的Gibbs函数变值△rG,用△rG判据推测了界面反应产物并与透射电镜实验结果进行了对比分析。研究表明,由于Ti2AlNb中原子结合力较Ti3Al强,因而SCS-6 SiC/Ti2AlNb复合材料的界面反应较SCS-6 SiC/Ti3Al轻。反应初期形成晶粒非常细上的TiC,Ti5Si3,晶粒较大的TiC和Ti3Si是由于元素扩散和反应所形成。在对复合材料的热暴露中,这些反应产物均进一步长大,并由于反应Ti3Al C→Ti3AlC,在Ti2AlNb基体中形成一些三元反应产物Ti3AlC晶粒。  相似文献   

2.
通过SiC/Ti6Al4V钛基复合材料的制备及在不同条件下的热处理试验,利用SEM,EDS及XRD分析技术研究复合材料界面反应产物相的形成及反应元素的扩散路径。结果表明:反应元素如C,Ti,Si在界面反应层中出现浓度波动,合金元素Al并没有显著扩散进入界面反应产物层,而是在界面反应前沿堆积,其界面反应产物被确认为Ti3SiC2,TiCx,Ti5Si3C,和Ti3Si;在界面反应初期,存在着TiC+Ti5Si3Cx双相区,当形成各界面反应产物单相区时,SiC/Ti6Al4V复合材料界面反应扩散的完整路径应为:SiC | Ti3SiC2 | Ti5Si3Cx | TiCx | Ti3Si| Ti6Al4V+TiCx;界面反应产物层的生长受扩散控制,遵循抛物线生长规律,其生长激活能Q^k及k0分别为290.935 kJ·mol^-1,2.49× 10^-2 m·s^-1/2.  相似文献   

3.
SiC连续纤维增强钛基复合材料研究   总被引:8,自引:0,他引:8  
采用SCS-6 SiC连续纤维和箔-纤维-箔法制备SiC长纤维增强的TC4和Ti40基复合材料,研究复合材料的微观组织结构,结果表明:采用925℃的固化工艺制备长纤维SiC/TC4 和SiC/Ti40复合材料是合适的;SiC/TC4和SiC/Ti40复合材料的界面反应层厚度分别为0.8μm和0.6μm,基体与纤维的界面结合良好,在SiC/Ti40复合材料两纤维间区域存在TiC析出物。  相似文献   

4.
研究了SiC/Ti40复合材料在不同热处理态下的界面行为。结果表明,SiC/Ti40复合材料相邻两纤维间存在TiC析出物,在1000℃处理时,TiC析出物消失;SiC/Ti40复合材料界面反应厚度与处理时间的平方根呈线性关系,温度超过800℃,界面厚度明显增加;SCS-6SiC/Ti40复合材料界面产物为Ti5Si3。  相似文献   

5.
SiC长纤维增强钛合金基复合材料的界面研究   总被引:3,自引:0,他引:3  
研究了SiC/TC4和SiC/Ti40复合材料在不同热处理态下的界面行为。结果袭明,SiC/Ti40复合材料相邻两纤维间存在TiC析出物,在1000℃处理后,TiC析出物消失;2种复合材料界面反应厚度随处理温度升高和时间延长而增大:SCS-6SiC/TC4和SiC/Ti40复合材料界面产物均为Ti5Si3。  相似文献   

6.
SiCf增强Ti-48Al-1.5Mn复合材料的界面反应   总被引:3,自引:0,他引:3  
利用透射电子显微镜(TEM)对SiC纤维(SiCf)增强Ti-48Al-1.5Mn复合材料的界面区域进行了分析。结果表明,在材料的复合过程中,SiCf与γ-TiAl基体之间发生了化学反应,形成了TiC1-x,Ti5Si3和Ti2AlC等一系列产物,并对这些产物的形成机制进行了分析。在高温条件下,C,Si原子从纤维向基体扩散和Ti,Al,Mn等原子从基体向纤维扩散,发生了界面反应。  相似文献   

7.
SiC/TiAl界面固相反应研究   总被引:1,自引:0,他引:1  
使用扫描电子显微镜、电子能谱仪、X射线衍射仪对经950~1100℃热处理的SiC/TiAl平面界面偶界面固相反应层的成分分布、微结构及相组成等进行了分析研究,讨论了SiC/TiAl界面固相反应机制,并对热处理过程中反应层成长的动力学过程进行了探讨,获得相应的动力学方程.结果表明,SiC/TiAl界面固相反应层主要由TiC、Ti5Si3Cx及Ti(Al,Si)2构成.其中,TiC和Ti5Si3Cx主要富集于邻近SiC的反应区,而Ti(Al,Si)2富集于邻近TiAl侧的反应区.SiC/TiAl界面固相反应的发生归因于TiC和Ti5Si3Cx数值大的负吉布斯自由能变化.SiC/TiAl界面固相反应层遵循抛物线生长规律,为扩散控制的反应过程,反应速率常数为:K=8.47×10-3exp(-322×103/RT)(m2/s).  相似文献   

8.
利用纤维涂层法(FMC)、结合热压工艺制备了SiC纤维增强Ti55基复合材料(SiCf/Ti55).主要研究复合材料在经不同条件真空热暴露处理后,其反应产物相形成的反应序列以及界面反应动力学.结果表明,仅C、Si和Ti等元素参与了界面反应.在1000 ℃热暴露时,SiCf/Ti55复合材料界面反应产物序列为SiC | Ti3SiC2 | Ti5Si3+TiC | TiC | Ti55.但是,在低温热暴露的复合材料中不存在Ti3SiC2相.SiCf/Ti55复合材料界面反应产物的生长受扩散控制且遵循抛物线生长规律,其生长激活能Qk及指数系数k0分别为198.16 kJ·mol-1,1.79(10-3 m·s-1/2.相比SiCf/Ti复合材料和SiCf/Ti2AlNb复合材料,SiCf/Ti55复合材料拥有一个高稳定性的界面.然而,相比SiCf/Ti600复合材料和SCS-6 SiCf/ super а2复合材料,SiCf/Ti55复合材料中的纤维与基体更容易发生反应,且界面层更容易生长.  相似文献   

9.
采用扫描电镜、透射电镜和x射线衍射仪研究了用中国制备SiC纤维增强的Ti-6AI-4V复合材料的界面反应,发现在SiC纤维的C涂层和Ti-6AI-4V基体之间形成的界面反应产物为细晶粒和粗晶粒的TiC,而无C涂层的SiCf/Ti.6AI.4V的界面反应产物,从SiC纤维到Ti-6AI-4V基体,依次为细晶粒的TiC+Ti5Si3、粗晶粒的TiC和Ti3SiC2。还测量了界面反应区厚度并讨论了界面反应机理。  相似文献   

10.
SCS-6 SiC纤维增强钛基复合材料的界面反应   总被引:3,自引:0,他引:3  
SCS-6 SiC纤维增强Super α2钛基复合材料界面反应较严重,其反应产物分布可达6层之多;SCS-6 SiC/Ti2AlNb及SCS-6 SiC/IMI834复合材料仅形成3-4层界面反应产物SCS-6 SiC/IMI834复合材料在界面处形成的S2硅化物可在一定温度下阻止反应的进一步进行,使复合材料具有很好的热稳定性.对界面反应热力学研究表明,Ti3Al+C→Ti3AlC反应导致了界面反应产物Ti3AlC的形成.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号