首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2021,47(19):27195-27200
Enameled metal equipment possesses the advantages of the material strength of metal and the corrosion resistance of glass; therefore, such equipment is used extensively in industries involving chemical processes. However, the mechanical properties of enamel affect its service life. Therefore, the enhancement of the mechanical properties of enamel to extend its service life is important. To improve the mechanical impact and bending resistances of enamel, we used enameled samples with Q345R steel as a metal matrix for controlled-temperature sintering. The enameled samples were prepared using varying amounts of B2O3 in the formulation of the enamel glaze, and the mechanical impact and bending resistances of the enamel were studied via the ball impact and three-point bending methods. The results show that B2O3 addition improves the mechanical impact and bending resistances of enamel significantly, although these resistances decrease when the B2O3 content is too high. The enamel exhibits an optimal mechanical impact resistance with a B2O3 content of 2%, and an optimal bending resistance with a B2O3 content of 3%. These results provide important reference values that can be used to optimize the formulation of enamel and extend the service life of enamel equipment.  相似文献   

2.
The introduction of carbon nanotubes in a polymer matrix can markedly improve its mechanical properties and electrical conductivity, and much effort has been devoted to achieve homogeneous dispersions of carbon nanotubes in various polymers. Our group previously performed successfully fluorine‐grafted modification on the sidewalls of multi‐walled carbon nanotubes (MWCNTs), using homemade equipment for CF4 plasma irradiation. As a continuation of our previous work, in the present study CF4 plasma‐treated MWCNTs (F‐MWCNTs) were used as a nanofiller with poly(ethylene terephthalate) (PET), which is a practical example of the application of such F‐MWCNTs to prepare polyester/MWCNTs nanocomposites with ideal nanoscale structure and excellent properties. As confirmed from scanning electron microscopy observations, the F‐MWCNTs could easily be homogeneously dispersed in the PET matrix during the in situ polymerization preparation process. It was found that a very low content of F‐MWCNTs dramatically altered the crystallization behavior and mechanical properties of the nanocomposites. For example, a 15 °C increase in crystallization temperature was achieved by adding only 0.01 wt% F‐MWCNTs, implying that the well‐dispersed F‐MWCNTs act as highly effective nucleating agents to initiate PET crystallization at high temperature. Meanwhile, an abnormal phenomenon was found in that the melt point of the nanocomposites is lower than that of the pure PET. The mechanism of the tailoring of the properties of PET resin by incorporation of F‐MWCNTs is discussed, based on structure–property relationships. The good dispersion of the F‐MWCNTs and strong interfacial interaction between matrix and nanofiller are responsible for the improvement in mechanical properties and high nucleating efficiency. The abnormal melting behavior is attributed to the recrystallization transition of PET occurring at the early stage of crystal melting being retarded on incorporation of F‐MWCNTs. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
Aligned multiwalled carbon nanotubes (MWCNTs) of high purity, low metal content and narrow size distribution were synthesized by chemical vapour deposition of acetylene along with iron-organometallic compounds in the temperature range 650–850 °C. The obtained MWCNTs were characterized by thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and N2 adsorption. The effect on the carbon nanotube structure of different parameters such as, reaction temperature, nature of the iron catalyst precursor, the reaction mixture flow rate and the relative proportion of metal precursor to carbon source, has been studied. It was found that the outer and inner diameters of the carbon nanotubes were directly proportional to the iron catalyst concentration. Moreover, the wall numbers and the diameters of the carbon nanotubes were related to their apparent specific surface areas.  相似文献   

4.
This paper investigates the effect of functional groups on the hydrogen sulfide sensing properties of multi-walled carbon nanotubes using carboxyl and amide groups and Mo and Pt nanoparticles as decorated precursors in gaseous state at working temperature. Carbon nanotubes were synthesized by the CVD process and decorated with the nano particles; provide higher sensitivity for H2S gas detection. The MWCNTs were characterized by scanning electron microscopy combined with energy dispersive X-ray (SEM/EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), ATR-IR absorption and Fourier transforms infrared (FT-IR) analyses. The MWCNTs were deposited as a thin film layer between prefabricated gold electrodes on alumina surfaces. The sensitivity of carbon nanotubes was measured for different H2S gas concentrations and at working temperature. The results showed that the measured electrical conductance of the modified carbon nanotubes with functional groups is modulated by charge transfer with P-type semiconducting characteristics and metal decorated carbon nanotubes exhibit better performances compared to functional groups of carboxyl and amide for H2S gas monitoring at room temperature.  相似文献   

5.
The homogeneous nanocomposites (NC) films of amino modified and metal decorated multiwall carbon nanotubes (MWCNTs) with polymethylmethacrylate (PMMA) were synthesized through in‐situ free radical polymerization. Silver metal nanohybrids (Ag/MWCNTs) were prepared by two strategies, that is, reduction of metal salt in presence of sodium dodecyl sulfate and in‐situ growth from AgNO3 aqueous solution. The amino functionalization by ball milling enhanced the dispersion of MWCNT in monomer and produced a new class of radiation resistant NC. These synthesized films were characterized by FTIR, TGA, TEM, EDX, TC, DMA, and optical microscopy to ascertain their structural morphologies, thermal stability, and mechanical strength. Microscopic studies reflect the homogeneous mixing of amino functionalized and metal decorated MWCNTs in polymer matrix contributing in the enhancement of thermal stability, thermo‐mechanical strength, glass transition temperatures, and thermal conductivity of NC even at 0.25 wt% addition of modified nanofiller. The thermal stability of NC film at 0.25 wt% loading was increased around ≂50°C and the raise of thermo‐mechanical properties was observed up to 85% at 100°C in the presence of adsorbed surfactant. Thermal and thermomechanical behavior of pre and post UV/O3 irradiated NC films has been compared with neat polymer. The results revealed that amino modified nanofiller embedded network in polymer matrix can effectively disperse the radiation and has a dramatic reinforcement effect on the nature of degradation of PMMA matrix. POLYM. COMPOS., 35:1807–1817, 2014. © 2013 Society of Plastics Engineers  相似文献   

6.
The use of multi-wall carbon nanotubes (MWCNTs) or single-wall carbon nanotubes (SWCNTs) as filler in ceramic matrices could create composites with exceptional mechanical properties. We have prepared dense monolithic alumina (Al2O3) and zirconia-toughened alumina (ZTA) composites with additions of 0.01 wt% of MWCNTs or 0.01 wt% of SWCNTs by conventional sintering and have demonstrated that the mechanical properties depend on (a) the distribution of CNTs in the matrix and (b) the interaction between the ceramic phases and CNTs. The fracture toughness of Al2O3 ceramics reinforced with SWCNTs was significantly better than those reinforced with MWCNTs. However, fracture toughness in MWCNT-reinforced ZTA increased 41% over ZTA free of the toughening agent and 44% over ZTA reinforced with SWCNTs. A well dispersed and small amount of MWCNTs was enough to produce an increase of fracture toughness in ZTA composites.  相似文献   

7.
A number of batch polymerizations were performed to study the effect of multi‐walled carbon nanotubes (MWCNTs) on the properties of PMMA/MWCNTs nanocomposites. To improve the dispersion of nanotubes in PMMA matrix, MWCNTs were functionalized with methacrylate groups via a four‐step modification process and the modified nanoparticles were used to synthesize the nanocomposites. The prepared samples were characterized by Raman spectroscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, differential scanning calorimetry, gel permeation chromatography, UV–visible, and TEM techniques. According to the results, modified nanotubes improved thermal and mechanical properties better than the pristine MWCNTs. The main improvement in the mechanical and thermophysical properties was achieved for the nanocomposite containing 0.5 wt% of MWCNTs. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

8.
《Ceramics International》2022,48(21):31909-31913
Enamel–metal composite materials with high strength and corrosion resistance are often used for fabricating enameled pressure vessels for pharmaceutical and chemical production. However, the low bending resistance of the enamel can result in the cracking and delamination of the enamel layer, leading to the loss of corrosion resistance of the enameled pressure vessel, which can result in accidents. Here, based on the goal of increasing the bending resistance of the enamel to prolong its service life, the effect of β-Si3N4 whiskers on the mechanical properties of enamel was studied by three-point bending tests. The effect of β-Si3N4 whiskers on the acid and alkali corrosion resistance of enamel was studied using aqueous H2SO4 and NaOH solutions, respectively. A sudden change in the force of an enameled sample under the three-point bending test was used to evaluate the bending resistance of the enamel–metal samples, and can also be used to evaluate the mechanical properties of other comparable materials. With the addition of 0.5 wt% β-Si3N4 whiskers, the bending resistance was significantly improved, along with the acid and alkali corrosion resistance. These findings are expected to provide guidance for the design and production of enamel-metal vessels with improved performance that can significantly lengthen the service life of enameled pressure vessels and reduce the occurrence of accidents.  相似文献   

9.
Multi-walled carbon nanotubes (MWCNTs) were covalently grafted to cellulose to make an MWCNT/cellulose (M/C) composite. Aligned M/C composite was obtained by mechanical stretching process. The stretching effect was demonstrated by observing morphology as well as measuring mechanical, electrical and piezoelectric properties of the M/C composite. The influence of aligned MWCNTs on the actuator performance of the M/C composite was evaluated in terms of bending displacement and resonance frequency depending on the stretching ratio and environmental humidity level. The aligned MWCNTs contributed to remarkably enhancing the mechanical and piezoelectric properties, but also improving actuator performance of the M/C composite.  相似文献   

10.
Surface functionalization of multiwall carbon nanotubes (MWCNTs) was carried out by introducing a ylide group containing anchored phenol structures. Epoxy nanocomposites filled with modified and pristine carbon nanotubes were prepared, and their mechanical, electrical, and thermal properties were evaluated. Mechanical properties such as tensile strengths and Young’s moduli of the epoxy nanocomposites increased significantly with the addition of the modified MWCNTs compared to the pristine MWCNTs, due to the strong interaction between the modified MWCNTs and the epoxy matrix. Scanning electron microscopy of the fractured epoxy systems revealed that the functionalized MWCNTs were finely dispersed in the matrix, as opposed to the pristine carbon nanotubes. The epoxy/functionalized MWCNT nanocomposite had a lower surface electrical resistance than the epoxy/pristine MWCNT nanocomposite, confirming the effect of functionalization.  相似文献   

11.
聚氨酯/碳纳米管复合材料的制备及其性能研究   总被引:2,自引:0,他引:2  
通过强碱球磨方法对多壁碳纳米管(MWCNTs)进行了改性处理,并对其化学结构和微观形态进行了分析.采用溶液共混法制备了聚氨酯(PUR)/MWCNTs复合材料.利用扫描电子显微镜、傅立叶变换红外光谱仪对其进行了表征.探讨了MWCNTs对PUR/MWCNTs复合材料力学性能、热稳定性以及电导率的影响.结果表明,MWCNTs...  相似文献   

12.
The effect of the functionalization of multi-wall carbon nanotubes (MWCNTs) on the structure, the mechanical and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs or COOH-functionalized carbon nanotubes (MWCNT–COOH) were prepared and characterized. Dynamic-mechanical thermal analysis shows that the storage modulus increases with the addition of MWCNTs, whereas a constant value or even a weak reduction was observed for functionalized nanotubes. Two phases were suggested in the composites with MWCNT–COOH, both by dynamic-mechanical properties and by water transport. Chemical functionalization of MWCNTs increases the compatibility with the epoxy matrix due to the formation of an interface with stronger interconnections. This, in turn, causes a significant decrease in the electrical conductivity of this type of composite with respect to the untreated MWCNTs which can be explained in terms of tunnelling resistance between interacting nanotubes.  相似文献   

13.
The homogenous nanocomposite films of UV/O3 oxidized multiwall carbon nanotubes (MWCNTs) subsequently modified with aniline moiety were synthesized with polymethylmethacrylate (PMMA) through free radical polymerization. The phenylamine functional groups present on the surface of MWCNTs providing an anchoring sites for deposition of Ag metal nanoparticles (NP).The in situ free radical polymerization of MMA in the presence of these well dispersed nanotubes gave a new class of radiation resistant nanocomposite films. The synthesized materials were characterized by FT‐IR, TGA, TEM, EDX, TC, DMA, universal testing machine, and optical microscopy to ascertain their structural morphologies, thermal stability, and mechanical strength. The microscopic and structural properties reflect the homogenous mixing of modified MWCNTs in polymer matrix contributing in enhancement of thermal stability, thermo‐mechanical strength, glass transition temperatures, and thermal conductivity of nanocomposites even at 0.25 wt% addition of modified nanofiller. Thermal and thermo‐mechanical behavior of pre‐ and post‐UV/O3 irradiated nanocomposite films have been compared with neat polymer. The results revealed that modified nanofiller network can effectively disperse the radiation and has a dramatic reinforcement effect on the nature of degradation of PMMA matrix. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
The preparation of thermoplastic nanocomposites of waterborne polyurethane (WBPU) and multiwall carbon nanotubes (MWCNTs) via an in situ polymerization approach is presented. The effects of the presence and content of MWCNTs on the morphology and thermal, mechanical and electrical properties of the nanocomposites were investigated. Carbon nanotubes were modified with amide groups in order to enhance their chemical affinity towards WBPU. Thermogravimetric studies show enhanced thermal stability of the nanocomposites. Scanning and transmission electronic microscopy images prove that functionalized carbon nanotubes can be effectively dispersed in WBPU matrix. Mechanical properties reveal that Young's modulus and tensile strength tend to increase when appropriate amounts of MWCNTs are loaded due to the reinforcing effect of the functionalized carbon nanotubes. Thermal properties show an increase in the glass transition temperature and storage modulus with an increase in MWCNT content. X‐ray diffraction reveals better crystallization of the WBPU in the presence of MWCNTs. The WBPU/MWCNT nanocomposite film containing 1 wt% of MWCNTs exhibits a conductivity nearly five orders of magnitude higher than that of WBPU film. © 2017 Society of Chemical Industry  相似文献   

15.
Carbon nanotubes (CNTs) are a promising reinforcement for fabricating Al2O3–C refractories. However, CNTs are prone to agglomerate or react with antioxidants or reactive gaseous phases such as Al (g), Si (g) and SiO (g), etc. at high temperatures. To overcome the problems above, polycarbosilane (PCS) and multi-walled carbon nanotubes (MWCNTs) were firstly mixed with micro-alumina powder in a liquid medium and then incorporated into Al2O3–C refractories. Then the microstructure and mechanical properties of Al2O3–C refractories fired in the temperature range from 800 °C to 1400 °C were investigated in this work. The results showed that the MWCNTs were well dispersed in the specimens with addition of PCS in contrast to the specimens without PCS due to the PCS adsorption on the surface of MWCNTs during the mixing process. And the mechanical properties, such as cold modulus of rupture (CMOR), flexural modulus (FM), forces and displacements of Al2O3–C refractories with PCS were much higher than those without PCS, which was attributed to more homogeneous dispersion of MWCNTs, more residual MWCNTs as well as different morphologies of ceramic whiskers. Meanwhile, the oxidation resistance of Al2O3–C refractories with PCS was improved greatly, which was supposed that the in situ formed SiCxOy coating prevented the oxidation of MWCNTs to some extent.  相似文献   

16.
J.B. Zang  J.H. Zhang  X.Z. Cheng  H. Huang 《Carbon》2010,48(13):3802-8360
Multi-walled carbon nanotubes (MWCNTs) coated with metal titanium or carbide layers were prepared by heating a mixture of TiCl3, TiH2, and MWCNTs under vacuum. The resulting MWCNT-Ti(TiC) materials had a uniform and conformal core-shell structure. The thickness of the Ti(TiC) layer was determined by the deposition temperature and time. The amount of TiC in the shell depended primarily on the deposition temperature. Whether a metal or carbide coating was obtained was determined by controlling the deposition temperature. Ti(TiC)-coated MWCNTs showed better field emission properties than did pristine MWCNTs. This deposition method should prove to be a versatile route for fabricating other one-dimensional core-shell materials.  相似文献   

17.
The epoxy resin used as the bonding agent in carbon fiber-reinforced polymer (CFRP) strengthening systems was modified by the infusion of multiwalled carbon nanotubes (MWCNTs). Two types of surfactants, Triton X-100 and C12E8, were used to disperse the nanotubes in the epoxy resin employing ultrasonic mixing. Dynamic mechanical analysis and tensile tests were conducted to study the effect of the surfactant-assisted dispersion of nanotubes on the thermal and mechanical properties of epoxy composites. The morphology of the epoxy composites was interpreted using scanning electron microscopy (SEM). Moreover, the effect of surfactant treatment on the structure of nanotubes was investigated by Fourier transform infrared (FT-IR). Based on the experimental results, the tensile strength and the storage modulus of the epoxy resin were increased by 32% and 26%, respectively, by the addition of MWCNTs. This was attributed to the homogeneous dispersion of nanotubes in the epoxy resin according to the SEM images. Another reason for the enhancement in the tensile properties was the reinforced nanotube/epoxy interaction as a result of the surfactant anchoring effect which was proved by FT-IR. A moderate improvement in the glass transition temperature (T g) was recorded for the composite fabricated using Triton X-100, which was due to the restricted molecular motions in the epoxy matrix. To characterize the temperature-dependent tensile behavior of the modified epoxy composites, tensile tests were conducted at elevated temperatures. It was revealed that the MWCNT modification using surfactant substantially improves the tensile performance of the epoxy adhesive at temperatures above the T g of the neat epoxy.  相似文献   

18.
Carboxylated multiwalled carbon nanotubes (MWCNTs) were added to polyethersulfone hollow fiber membranes to improve their H2/CH4 separation properties. The addition of MWCNTs up to 1 wt% increased macrovoids formation in cross-section, while in 2 wt% loading, decreased due to increase in dope viscosity. The best gas separation performance for the mixed-matrix hollow fiber membranes was achieved at 1 wt% MWCNTs loading with hydrogen permeance of 69 GPU and H2/CH4 selectivity of 44.1 at 5 bar(g). Tensile test results showed that incorporation of MWCNTs into the polymeric matrix affected the mechanical properties of the fabricated membranes.  相似文献   

19.
Well‐dispersed multiwalled carbon nanotubes/polyurethane (MWCNTs/PU) composites were synthesized in situ polymerization based on treating MWCNTs with nitric acid and silane coupling agent. The morphology and degree of dispersion of the MWCNTs were studied using a high resolution transmission electron microscopy (HR‐TEM) and X‐ray powder diffraction (XRD). The result showed that MWCNTs could be dispersed still in the PU matrix well with the addition of 2 wt% MWCNTs. The thermal and mechanical properties of the composites were characterized by dynamic mechanical thermal analysis, thermogravimetric analysis, tensile, and impact testing. The result suggested that the glass transition temperature (Tg) of composites increased greatly with increasing MWCNTs content slightly, and the MWCNTs is also helpful to improve mechanical properties of composites. Furthermore, the composites have an excellent mechanical property with the addition of 0.5 wt% MWCNTs. The electrical property testing indicates that the MWCNTs can improve evidently the electrical properties of composites when adding 1 wt% MWCNTs to the PU matrix. The volume resistivity of composites reaches to an equilibrium value. POLYM. COMPOS., 33:1866–1873, 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
Studies have proved that increasing polymer matrices by carbon nanotubes to form structural reinforcement and electrical conductivity have significantly improved mechanical and electrical properties at very low carbon nanotubes loading. In other words, increasing polymer matrices by carbon nanotubes to form structural reinforcement can reduce friction coefficient and enhance anti-wear property. However, producing traditional MWCNTs in polymeric materix is an extremely complicated process. Using melt-mixing process or in situ polymerization leads to better dispersion effect on composite materials. In this study, therefore, to simplify MWCNTs /HDPE composite process and increase dispersion, powder was used directly to replace pellet to mix and sinter with MWCNTs. The composite bulks with 0, 0.5, 1, 2 and 4% nanotube content by weight was analyzed under SEM to observe nanotubes dispersion. At this rate, a MWCNTs/HDPE composite bulk with uniformly dispersed MWCNTs was achieved, and through the wear bench (Pin-on-Disk), the wear experiment has accomplished. Accordingly, the result suggests the sintered MWCNTs/HDPE composites amplify the hardness and wear-resist property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号