首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flexible antiferroelectric (AFE) Pb0.94La0.04Zr0.97Ti0.03O3 (PLZT) thick-film capacitors were fabricated on nickel foil substrates using sol-gel method. The thick PLZT film shows pure perovskite phase with dense microstructure. The discharge energy-storage properties of the thick PLZT film are directly evaluated by the resistance-inductance-capacitance (RLC) circuit. The maximum value of the discharge energy-storage density (Wdis) is 15.8 J/cm3 at 1400 kV/cm and 90% of the corresponding energy is released in a short time of about 250 ns. In addition, the Wdis and discharge time could be adjusted by the bent radius of the film, which provides a simple and feasible solution for the regulation of the electrical performance. Furthermore, the flexible AFE film exhibits good mechanical properties under cycling tests with bending radii down to 2.5 mm and 1500 rounds. This work shows a critical significance in fabricating flexible AFE capacitors for application in modern electronics and electrical power systems.  相似文献   

2.
Anti-ferroelectric materials with large saturated polarization, small remnant polarization, and moderate breakdown strength are receiving increasing attention for modern high-power electrical systems. Here we demonstrated that by incorporating CaZrO3 into NaNbO3 ceramics, the antiferroelectricity in NaNbO3-CaZrO3 solid solutions could be stabilized at room temperature. The effects of phase constitution and microstructure on the dielectric properties, electrical breakdown strength, and energy storage properties of the NaNbO3-CaZrO3 ceramics were investigated. Ferroelectric and antiferroelectric phase coexistence in the NaNbO3-CaZrO3 was confirmed by XRD and TEM analyses. With increasing CaZrO3 content, the grain size was reduced, and the dielectric breakdown strength was improved. Therefore, a high energy density of 0.55?J/cm3 and efficiency of 63% was obtained in the NaNbO3-0.04CaZrO3 ceramics. These lead-free NaNbO3-CaZrO3 antiferroelectrics with good electrical energy storage can be exploited for high-power storage devices.  相似文献   

3.
The antiferroelectric/ferroelectric (PbZrO3/PbZr0.52Ti0.48O3) bilayer thin films were fabricated on a Pt(111)/Ti/SiO2/Si substrate using sol‐gel method. PbZr0.52Ti0.48O3 layer acts as a buffered layer and template for the crystallization of PbZrO3 layer. The PbZrO3 layer with improved quality can share the external voltage due to its smaller dielectric constant and thinner thickness, resulting in the enhancements of electric field strength and energy storage density for the PbZrO3/PbZr0.52Ti0.48O3 bilayer thin film. The greatly improved electric breakdown strength value of 2615 kV/cm has been obtained, which is more than twice the value of individual PbZr0.52Ti0.48O3 film. The enhanced energy storage density of 28.2 J/cm3 at 2410 kV/cm has been achieved in PbZrO3/PbZr0.52Ti0.48O3 bilayer film at 20°C, which is higher than that of individual PbZr0.52Ti0.48O3 film (15.6 J/cm3). Meanwhile, the energy storage density and efficiency of PbZrO3/PbZr0.52Ti0.48O3 bilayer film increase slightly with the increasing temperature from 20°C to 120°C. Our results indicate that the design of antiferroelectric/ferroelectric bilayer films may be an effective way for developing high power energy storage density capacitors with high‐temperature stability.  相似文献   

4.
Enhancing the efficiency in energy storage capacitors minimizes energy dissipation and improves device durability. A new efficiency-enhancement strategy for antiferroelectric ceramics, imposing relaxor characteristics through forming solid solutions with relaxor compounds, is demonstrated in the present work. Using the classic antiferroelectric (Pb0.97La0.02)(Zr1-x-ySnxTiy)O3 as model base compositions, Bi(Zn2/3Nb1/3)O3 is found to be most effective in producing the “relaxor antiferroelectric” behavior and minimizing the electric hysteresis. Specifically, a remarkable energy storage efficiency of 95.6% (with an energy density of 2.19 J/cm3 at 115 kV/cm) is achieved in the solid solution 0.90(Pb0.97La0.02)(Zr0.65Sn0.30Ti0.05)O3–0.10Bi(Zn2/3Nb1/3)O3. The validated new strategy, hence, can guide the design of future relaxor antiferroelectric dielectrics for next generation energy storage capacitors.  相似文献   

5.
Lead-free NaNbO3 (NN) antiferroelectric ceramics provide superior energy storage performance and good temperature/frequency stability, which are solid candidates for dielectric capacitors in high power/pulse electronic power systems. However, their conversion of the antiferroelectric P phase to the ferroelectric Q phase at room temperature is always accompanied with large remnant polarization (Pr), which significantly reduces their effective energy storage density and efficiency. In this study, to optimize the energy storage properties, short-range antiferroelectric (0.95-x)NaNbO3-xBi(Mg2/3Nb1/3)O3-0.05CaZrO3 (xBMN) ceramics were designed to stabilize the antiferroelectric phase, in which the local random fields were simultaneously constructed. The results showed that the antiferroelectric orthorhombic P phase was transformed into the R phase, and the local short-range random fields were generated, which effectively inhibited the hysteresis loss and Pr. Of great interest is that the 0.12BMN ceramics displayed a large recoverable energy storage density (Wrec) of 5.9 J/cm3 and high efficiency (η) of 85% at the breakdown strength (Eb) of 640 kV/cm. The material also showed good frequency stability in the frequency range of 2–300 Hz, excellent temperature stability in the temperature range of 20–110 ℃, and a very short discharge time (t0.9∼4.92 μs). These results indicate that xBMN ceramics have great potential for advanced energy storage capacitor applications.  相似文献   

6.
Energy storage capacitors with high recoverable energy density and efficiency are greatly desired in pulse power system. In this study, the energy density and efficiency were enhanced in Mn-modified (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics via a conventional solid-state reaction process. The improvement was attributed to the change in the antiferroelectric-to-ferroelectric phase transition electric field (EF) and the ferroelectric-to-antiferroelectric phase transition electric field (EA) with a small Mn addition. Mn ions as acceptors, which gave rise to the structure variation, significantly influenced the microstructures, dielectric properties and energy storage performance of the antiferroelectric ceramics. A maximum recoverable energy density of 2.64 J/cm3 with an efficiency of 73% was achieved when x = 0.005, which was 40% higher than that (1.84 J/cm3, 68%) of the pure ceramic counterparts. The results demonstrate that the acceptor modification is an effective way to improve the energy storage density and efficiency of antiferroelectric ceramics by inducing a structure variation and the (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3-xMn2O3 antiferroelectric ceramics are a promising energy storage material with high-power density.  相似文献   

7.
The electrical hysteresis behaviors and energy storage performance of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric (AFE) ceramics were studied under the combined effects of electric field and temperature. It was observed that the temperature dependence of recoverable energy density (Wre) of AFE ceramics depends critically on the applied electric field. While Wre at lower electric fields (<8 kV/mm) shows increasing tendency with increasing temperature from 20°C to 100°C, Wre at higher electric fields (>8 kV/mm) demonstrates decreasing dependence. There exists an appropriate electric field (8 kV/mm) under which the AFE ceramics exhibit nearly temperature‐independent Wre (the variation is less than 0.5% per 10°C). The underlying physical principles were also discussed in this study. These results indicate that the temperature dependence of Wre of AFE materials can be tuned through selecting appropriate electric fields and provide an avenue to obtain thermal stable energy storage capacitors, which should be of great interest to modern energy storage community.  相似文献   

8.
9.
《Ceramics International》2022,48(22):33082-33091
Powder aerosol deposited (PAD) ceramic thick films are a promising candidate for applications in energy storage and energy harvesting. The room-temperature deposition process allows for integration of ceramic films on low-melting substrates, such as stainless steel and polymers, without sintering. Despite this, the dielectric and electromechanical properties vastly differ from bulk ceramics due to internal residual stresses, oxygen defects, and the nano-grained microstructure associated with the deposition process. Although thermal annealing can improve macroscopic properties, precise control of the thermal expansion mismatch between the film and the substrate is required to avoid delamination and film cracking. In this study, we present a method to determine the actual thermal expansion of the film based on the fabrication of freestanding PAD films. Utilizing freestanding films, we demonstrate that dopants and processing conditions such as the carrier gas species directly influence oxygen defects thus modulating the unit cell volume and the conductivity of the oxide film. This is found to be crucial to attain improved dielectric properties within a moderate temperature environment (500 °C) preserving the benefits of the room-temperature deposition process. Additional densification mechanisms are investigated with transmission electron microscopy, scanning electron microscopy, and X-ray microtomography.  相似文献   

10.
《Ceramics International》2017,43(10):7804-7809
Lead-free Na0.5Bi0.5Ti1−xMnxO3 (NBTMnx, x=0, 0.01, 0.03 and 0.05) ferroelectric thick films have been fabricated on LaNiO3/Si(100) substrate by using a polyvinylpyrrolidone-modified sol-gel method and the effects of Mn content on their microstructure, dielectric properties and energy-storage performance were investigated. Compared with the pure Na0.5Bi0.5TiO3 (NBT) thick films, NBTMnx thick films exhibited a large enhancement in dielectric properties and energy-storage performance. Particularly, a giant recoverable energy-storage density (W) of 30.2 J/cm3 and the corresponding efficiency (η) of 47.7% were obtained in NBTMn0.01 thick film at 2310 kV/cm. Moreover, the NBTMn0.01 thick film displayed good energy-storage stability over a large temperature range at different frequency.  相似文献   

11.
12.
13.
Ionically conducting 1–3 nm thick porous films of overoxidized polypyrrole (OPPY) were electrodeposited on nanostructured 7 μm diameter carbon fiber microdisk electrodes. The microdisk electrodes were fabricated from two types of polyacrylonitrile (PAN) carbon fibers, PAN T650 and PAN HCB. The electrodes were nanostructured by electrochemical etching of the microdisk electrode surface. Ultrathin porous polypyrrole (PPY) films were electrodeposited by the electropolymerization of pyrrole (PY) to PPY by a short (10 ms) single potential pulse. During the electropolymerization, the polymer “precipitated” on the nanostructured surface producing ultrathin porous film. OPPY films were fabricated by constant potential overoxidation of PPY.In steady-state voltammetry of ferricyanide, the nanostructured electrodes behave as a random array of microscopic nodules and pores. At potential scan rates of 0.050 V s−1 diffusion fields at the 300–600 nm nodules on the 7 μm diameter microdisk electrode overlap. The surface area of the electroactive nanofeatures decreases after deposition of insulating OPPY. Kinetics of ferricyanide at bare and OPPY-coated nanostructured electrodes reflect the electrode surface area, as predicted by the model for charge transfer at a partially blocked surface. A model reflecting the 58–94% coverage of the nanostructured electrodes by OPPY was developed to address the high permeability of the porous OPPY-coated microdisk electrodes.  相似文献   

14.
(Pb, La)(Zr, Ti)O3 antiferroelectric (AFE) materials are promising materials due to their energy-storage density higher than 10 J cm−3, but their low energy-storage efficiency and poor temperature stability limit their application. In this paper, the (1 − x)(Pb0.9175La0.055)(Zr0.975Ti0.025)O3xPb(Yb1/2Nb1/2)O3 (PLZTYN100x) AFE ceramics were prepared via two-step sintering method and investigated thoroughly. With the doping of Yb3+ and Nb5+, the phase structure transforms from the orthorhombic phase (AFEO) to the coexistence of the orthorhombic-and-tetragonal phases. This structure reduces the free energy difference between the AFE and ferroelectric phases and reduces the fluctuation of energy with temperature, improving the energy storage efficiency and temperature stability. When the x = 0.05 (PLZTYN5), the AFE ceramic exhibits excellent temperature stability and ultrahigh energy storage performance, whose recoverable energy density (Wrec) is 6.8–8.2 J cm−3 at 30 kV mm−1 in the temperature range from −55 to 75°C, and efficiency (ƞ) is 78%–86.7%. In addition, the change of Wrec is less than 15%, exceeding the performance of most AFE ceramics. The results demonstrate that the PLZTYN5 ceramic has great potential in pulse power capacitors.  相似文献   

15.
This paper demonstrates novel approach on Si field emitter arrays (FEAs) coated with thin ferroelectric films for vacuum microelectronic applications, which exhibit enhanced electron emission behaviors. The films were deposited using sol–gel and sputtering process, respectively. In sol–gel approach, the emission behavior is highly correlated to the crystallinity of (Ba,Sr)TiO3 (BST) layer. The interfacial reaction between Si and BST film would deteriorate the crystallinity of the films, and in turn impede the electron emission from silicon tips. The film thickness and the dopants also affect the emission behaviors significantly. In sputtering process, the nitrogen-incorporated SrTiO3 (STO) films are deposited with eliminated interfacial due to relatively lower processing temperature. The enhanced emission characteristics are highly correlated with nitrogen-incorporation and film thickness. These encouraging results have offered great promise for the application of ferroelectric films in field emission devices.  相似文献   

16.
This study investigated an unconventional method of electrophoretic deposition (EPD) for the processing of environmentally benign (K0.5Na0.5)0.99Sr0.005NbO3 (KNNSr) thick films on Pt/alumina substrate. EPD allows rapid, economical, and low-waste processing of thick films and thus offers an integration advantage for electronics manufacturing. To understand the functional response of the KNNSr thick films, the effect of the sintering temperature and atmosphere on their structure, microstructure, and electromechanical properties was investigated. KNNSr thick films densify in constrained conditions in a very narrow temperature range only a few 10°C below the melting temperature of 1140°C. Up to 1100°C the relative density increases to 80%, upon further heating to 1110°C we observed only the grain growth and pore coalescence. The densification is not affected significantly by the atmosphere. The local domain structure of 25-33 μm thick KNNSr films was similar, while the dielectric and electromechanical properties increased with the increasing sintering temperature. KNNSr thick film sintered at 1100°C has a thickness-coupling factor kt of 0.4, comparable to that of bulk. The results reveal that the EPD enables the economic processing of high-performance thick films on complex-shape substrates that are difficult to fabricate using conventional thick-film methods.  相似文献   

17.
In this work, the influence of different thermal sintering treatments on Li1.3Al0.3Ti1.7(PO4)3 NASICON thick films has been investigated. The isostatic lamination step performed before the thermal sintering of thick films has demonstrated to improve film density and grain size, increasing "bulk" and grain boundary Li-conductivities. The confocal Raman spectroscopy characterization allowed the observation of the connectivity of the particles present in the ceramic samples and so a deeper understanding of ionic conductivity. The dependence of total and "bulk" Li conductivity on the samples microstructure is discussed. The films sintered by slow heating sintering with a previous lamination step, displayed an overall Li- conductivity >10?4 Ω-1 cm-1, that is superior to that reported in commercial OHARA Li- NASICON glass ceramics. The tape casting deposition method is scalable for preparation of large area thick supported electrolyte films with high conductivity for novel Li ion all solid state batteries (ASSB) architectures.  相似文献   

18.
(Pb0.98, La0.02)(Zr0.95, Ti0.05)O3 (PLZT) thin films of 300 nm thickness were epitaxially deposited on (100), (110), and (111) SrTiO3 single crystal substrates by pulsed laser deposition. X-ray diffraction line and reciprocal space mapping scans were used to determine the crystal structure. Tetragonal ((001) PLZT) and monoclinic MA ((011) and (111) PLZT) structures were found, which influenced the stored energy density. Electric field-induced antiferroelectric to ferroelectric (AFE→FE) phase transitions were found to have a large reversible energy density of up to 30 J/cm3. With increasing temperature, an AFE to relaxor ferroelectric (AFE→RFE) transition was found. The RFE phase exhibited lower energy loss, and an improved energy storage efficiency. The results are discussed from the perspective of crystal structure, dielectric phase transitions, and energy storage characteristics. Besides, unipolar drive was also performed, providing notably higher energy storage efficiency values due to low energy losses.  相似文献   

19.
Sr-doped Ca3Co4O9 thermoelectric thick films have been prepared by dip-coating technique, followed by sintering and hot uniaxial pressing. XRD patterns are very similar in both types of samples, with only differences in the relative intensity of peaks, pointing out to a better grain orientation in hot-pressed films. Moreover, SEM observation showed a drastic decrease in the hot-pressed films thickness. Electrical resistivity is decreased in textured materials due to the higher grain orientation and density, confirmed through Hall measurements. On the other hand, Seebeck coefficient is maintained practically unchanged. Power factor at 800°C is much higher in textured materials (0.44 mW/K2m) than determined in sintered films (0.30 mW/K2m), and in the order of the best typically reported in the literature (0.43 mW/K2m).  相似文献   

20.
《Ceramics International》2016,42(11):12623-12629
In this work, electrohydrodynamic atomization deposition, combined with mechanical polishing, was used for the fabrication of dense and even PZT thick films. The PZT slurry was ball-milled and the effect of milling time on the characteristics of the deposited films was examined. A time of 50 h was found to be the optimum milling time to produce dense films. It was found that the PZT thick films presented rough surface after deposition. In order to overcome this drawback the mechanical polishing process was employed on the deposited films. After the mechanical polishing the roughness (Ra) and peak-to-peak height (Rz) of the film surface were decreased from 422 nm to 23 nm and from 5 µm to 150 nm, respectively. Subsequently, an increase of ~10 pC N−1 on piezoelectric constant (d33, f) was obtained. In addition, it was observed that the d33 was increased from 57 pC N−1 to 89 pC N−1 when the thickness was increased from 10 µm to 80 µm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号