首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以NiSO4.7H2O,Fe2(SO4)3和NH4HCO3为原料,在表面活性剂PEG-400存在下,先在室温下研磨反应混合物使其进行固相反应,然后用水洗去混合物中的可溶性无机盐后于80℃下烘干,即得纳米晶NiFe2O4前驱体。通过煅烧前驱体即得反尖晶石型NiFe2O4纳米晶产品。采用TG/DTA,IR,XRD和VSM对前驱体及其热解产品进行表征。结果表明,400℃下煅烧前驱体2h得到粒径约为17.2nm的反尖晶石型NiFe2O4纳米晶,其比饱和磁化强度为32.3emu/g。  相似文献   

2.
以NiSO4·7H2O,ZnSO4·7H2O,Fe2(SO4)3和NH4HCO3为原料,在表面活性剂PEG-400存在下,先在室温下研磨反应混合物使其进行固相反应,然后用水洗去混合物中的可溶性无机盐后于80℃下烘干,即得纳米晶Zn0.5,Ni0.5Fe2O4前驱体.通过煅烧前驱体即得反尖晶石型Zn0.5Ni0.5Fe2O4纳米晶产品.采用TG/DTA,XRD,IR,SEM和VSM对前驱体及其热解产品进行表征.结果表明,800%下煅烧前驱体3h得到粒径约为35nm的反尖晶石型Zn0.5Ni0.5Fe2O4纳米晶,其比饱和磁化强度为75.4emu/g,矫顽力Hc为400e,剩磁Mr为3emu/g.  相似文献   

3.
以NiSO4·7H2O,Fe2(SO4)3和NH4HCO3为原料,在表面活性剂PEG-400存在下,先在室温下研磨反应混合物使其进行固相反应,然后用水洗去混合物中的可溶性无机盐后于80℃下烘干,即得纳米晶NiFe2O4前驱体.通过煅烧前驱体即得反尖晶石型NiFe2O4纳米晶产品.采用TG/DTA,IR,XRD和VSM对前驱体及其热解产品进行表征.结果表明,400℃下煅烧前驱体2h得到粒径约为17.2nm的反尖晶石型NiFe2O4纳米晶,其比饱和磁化强度为32.3emu/g.  相似文献   

4.
采用光降解沉积法合成复合材料Fe0.5Co0.25Ni0.25Ox-Ti4O7电极,利用SEM-EDS、TEM观察电极材料的形貌、元素分布以及粉体的显微结构。电极材料呈多孔结构,铁、钴、镍氧化物按设计的摩尔比包覆在Ti_4O_7上,以高缺陷态存在;通过在0.1mol/L KOH中的循环伏安测试(CV)和线性伏安扫描测试(LSV)测试,材料具有氧还原(ORR)和氧析出(OER)催化活性;以Fe_(0.5)Co_(0.25)Ni_(0.25)O_x-Ti_4O_7为催化材料组装成有机体系的锂氧气电池,在100mA/g条件下恒流充放电,电池首次放电比容量可达6 000mAh/g,随后过程衰减较快;而在100mA/g和800mAh/g条件下恒流恒容充放电时,放电电压可保持在2.7V以上稳定循环25圈。  相似文献   

5.
将化学计量比的LiOH·H_2O、Ni(NO_3)_2·6H_2O与超细α-MnO_2纳米线前驱体均匀混合,在800℃下煅烧12 h合成LiNi_(0.5)Mn_(1.5)O_4纳米棒。通过XRD、TEM和电化学测试对样品的晶体结构、表面形貌及电化学性能进行了表征。结果表明:超细α-MnO_2纳米线平均直径为10 nm,多根α-MnO_2纳米线聚集成簇。LiNi_(0.5)Mn_(1.5)O_4纳米棒直径为50 nm,与α-MnO_2纳米团簇的直径相仿。电化学测试结果表明:LiNi_(0.5)Mn_(1.5)O_4纳米棒的初始放电比能量为475 Wh/kg,循环500圈后容量保持率为99%。  相似文献   

6.
以MnSO_4·H_2O与NaClO_3为原料,NH_4F为辅助剂,通过水热法合成了海胆状β-MnO_2前驱体,研究了NH_4F用量对前驱体形貌的影响。以形貌最优的β-MnO_2作为前驱体与LiOH·H_2O通过高温烧结合成棒状尖晶石型LiMn_2O_4,并将它与商业MnO_2为前驱体合成的尖晶石型LiMn_2O_4进行了结构和性能比较。通过X射线衍射分析(XRD)、扫描电镜(SEM)以及电化学性能测试等手段对MnO_2前驱体以及尖晶石型LiMn_2O_4产物进行了表征。实验结果表明,棒状LiMn_2O_4具有更优越的电化学性能:0.2C下首次放电比容量为119.8 m Ah/g,最高达到123.2 m Ah/g,30圈循环后,容量保持率为94.07%。  相似文献   

7.
以Na2HPO4·12H2O和SnCl4·5H2O为原料,在适量表面活性剂聚乙二醇(PEG)-400的存在下,先在室温下研磨反应混合物进行固相反应,然后将反应混合物在80℃下保温2h,接着用水洗去混合物中的可溶性无机盐后在80℃下烘干,即得磷酸锡钠纳米晶前驱体.将前驱体在600℃下保温使其转变成高纯NaSn2(PO4)3纳米晶.采用TG/DTA,IR,XRD和SEM对产品进行表征.结果表明,前驱体在600℃下保温1h得到结晶良好、空间群为R-3(148),平均粒径约为49.6nm的球形NaSn2(PO4)3.  相似文献   

8.
气相沉积法制备Nb_3Sn超导带,通常选用Hastelloy B合金作基带材料。这种合金加工性能很差,成材率很低。本文介绍我们研制成的Ni_(75)Mo_(21)Fe_4合金,既能满足超导带对基带的三项基本要求,又具有良好的加工性能。并对有关的几个问题进行了讨论。  相似文献   

9.
通过水热法采用Ni(N03)2·6H2O和FeCl3·6H2O合成纳米NiFe2O4粉体。利用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征。结果表明,不同PEG和反应温度对合成纳米NiFe2O4粉体有影响。通过扫描电镜分析,不加PEG、加PEG-400和PEG-2 000对近似于球体颗粒粒度大小有影响,而加入PEG-20000,纳米NiFe2O4粉体形状变成了纳米线,均匀分布;不同反应时间对合成纳米NiFe2O4粉体没有明显的影响;而不同反应温度对合成纳米NiFe2O4粉体形状有影响,其影响是从纳米线变化到出现少量颗粒与纳米线混合,再到大量球形颗粒混合纳米线。水热过程是溶解再结晶的过程,部分晶体经高温后结晶成颗粒。  相似文献   

10.
1IntroductionLithium secondary batteries have been rapidly developed because of their well performances such ashigh voltage,high specific energy,high capacity and light weight since appeared at last century.It waspromising to be the main power source of electric vehicles and electric tools.The more practical interestcathode materialsincluded mainlylithiumcobalt oxide,lithiumnickel oxide andlithium manganese oxideetal.At present,lithiumcobalt oxygen was the most widely usedin comerical,andits s…  相似文献   

11.
采用离子液体[bmim]BF_4为模板剂,研究低热固相反应法合成钾电池电极材料.在试验中先合成离子液体[bmim]BF_4,接着采用正交试验方法进行低热固相反应法合成锂电极材料,通过数据挖掘获得了最佳的合成条件.用XRD,TG-DTA,IR及TEM表征在最佳条件下合成得到的产物,该产物为70nm左右、结晶良好的复合材料LiNi_(0.5)Mn_(0.25)Co_(0.25)O_2.  相似文献   

12.
以乙酸锂、乙酸镍、乙酸锰为原料,采用乙二醇辅助溶胶凝胶法合成了高电压LiNi_(0.5)Mn_(1.5)O_4正极材料。通过X射线衍射(XRD)、红外光谱(FT-IR)、扫描电镜(SEM)对样品进行表征,用充放电测试和电化学阻抗对LiNi_(0.5)Mn_(1.5)O_4样品进行电化学性能测试。结果表明,LiNi_(0.5)Mn_(1.5)O_4样品都具有Fd3m尖晶石结构,且无明显杂质相,样品在900℃分别烧结2 h、6 h和10 h后,在1C下首次放电比容量分别为123、137和124 m Ah/g,循环230次后的容量保持率分别为92%、98%和96%。其中900℃烧结6 h样品电化学性能最佳,4C充电8C放电,循环500次后容量依然保持在125 m Ah/g,容量保持率为94%。  相似文献   

13.
以L-半胱氨酸为硫源,通过共沉淀法成功合成了Gd_2O_2SO_4∶Tb~(3+)纳米荧光粉。采用X射线衍射(XRD)、差热热重分析(DSC-TG)、傅里叶变换红外光谱仪(FTIR)、场发射扫描电子显微镜(FESEM)和光致发光(PL)光谱对产物的结构、形貌和发光性能进行表征。研究pH值、反应物的摩尔比和Tb~(3+)浓度对产物相组成、形貌和发光性能的影响。结果表明,当Gd~(3+)∶SO_4~(2-)=2∶3、pH=7.5时,合成的前驱体在800℃煅烧2h可获得单相Gd_2O_2SO_4纳米粉体。该粉体呈近球形,团聚较严重,平均粒径约为30nm。在230nm紫外光激发下,Gd_2O_2SO_4∶Tb~(3+)纳米荧光粉具有优异的发光性能,主发射峰位于544nm,归属于Tb~(3+)的~5 D_4→~7F_5跃迁。当Tb~(3+)浓度达到12%时,Gd_2O_2SO_4∶Tb~(3+)发光强度达到最大值。Gd_2O_2SO_4∶Tb~(3+)衰减过程符合双e指数衰减行为,对应的荧光寿命为τ1=0.177μs,τ2=0.119μs。  相似文献   

14.
采用溶胶凝胶法成功制备了锂离子电池Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2正极材料,利用扫描电镜(SEM)、循环伏安(CV)及充放电等测试手段研究了该材料的微观形貌和电化学性能。SEM表征结果表明,合成的Li1.2Mn0.56Ni0.16Co0.08O2粒径约为2μm,呈长片层状结构。CV测试表明,经过首次循环后,Li2Mn O3组分得到活化,并转变为具有电化学活性的Li Mn O2,造成了锂离子的不可逆损失。充放电测试表明,在0.2 C倍率循环时,Li_(1.2)Mn_(0.56)Ni_(0.16)Co_(0.08)O_2材料的首次放电比容量为199.7 m A·h/g。倍率性能测试表明,在经过36次充放电循环后,材料仍有很高的容量保持率。  相似文献   

15.
这次演讲,我想表述四个问题,即:1)磁铁矿(Fe_3O_4)的物理性质;2)关于铁磁氧化物表面结构的COSS与P—COSS概念的重要性;3)Fe_3O_4粒子与生物学的关系;4)介绍应用于磁流体的电磁学新发展(观点)。首先,磁铁矿Fe_3O_4有低的相变点,大约是125°K,而相变的电子结构已经用几乎所有的物理方法系统地研究过了。为了获得Fe~(2+)及Fe~(3+)在A和B晶格点的微观电子结构的  相似文献   

16.
采用乙二醇辅助的水热法合成了锂离子电池Li Mn0.6Fe0.4PO4/C纳米片正极材料,利用X射线电子衍射(XRD)及其Rietveld精修和扫描电子显微镜(SEM)表征分析了材料的结构与形貌;采用循环伏安(CV)和充放电测试研究了材料的电化学性能。结果表明,Li Mn0.6Fe0.4PO4/C纳米片形貌为片层状结构,具有与Li Mn PO4类似的结构,无杂质峰;Li Mn0.6Fe0.4PO4/C存在Mn2+/Mn3+和Fe2+/Fe3+两步转化过程;Li Mn0.6Fe0.4PO4/C纳米片具有较好的倍率容量和循环稳定性,5C倍率放电时,100次循环的容量仍高达115.8 m A·h/g左右,容量保有率为95.8%。  相似文献   

17.
为进一步明确提高锂离子正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2电化学性能的途径和方法,从Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2材料的形貌结构化改性进行研究,综述了Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2的原始形貌及改性后得到的纳米纤维、纳米管、石墨烯包裹、空心球结构、空心纳米球、珊瑚状等相关形貌和结构,并讨论了其相应的电化学性能,分析了锂离子正极材料Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2形貌结构对其电化学性能的影响,并对其发展趋势进行了展望。  相似文献   

18.
将化学计量比的前驱体Ni0.35Mn0.65(OH)2与Li2CO3均匀混合,采用不同高温段温度合成Li1.35[Ni0.35Mn0.65]O2+y富锂锰基正极材料。对合成的材料进行表征,结果表明:所合成的Li1.35[Ni0.35Mn0.65]O2+y正极材料为均匀的类球形,单颗粒大小均匀;XRD图谱显示材料为层状的α-Na Fe O2结构。将材料组装成CR2016扣式电池,采用蓝电测试仪以12.5 m A/g的电流密度进行充放电测试,2.0~4.8 V之间,最高初始放电比容量为198.0 m Ah/g,首次放电效率为69.7%。  相似文献   

19.
以过渡金属硫酸盐和一水合氢氧化锂为原料,采用共沉淀-高温固相烧结法制备富锂正极材料Li[Li0.2Ni0.13Co0.13Mn0.54]O2。通过XRD、SEM和电池充放电测试方法考察了产物结构和性能,结果表明:在水浴50℃下控制p H=11合成的前驱体具有很好的分散性,且在950℃下烧结得到了优越的电化学性能;在0.1C(1C=300 m A/g)充放电时,首次放电比容量为258.9 m Ah/g(2.0~4.8 V),首次充放电效率为75.6%;在1C充放电时,首次放电比容量为204.6 m Ah/g,循环10次后放电比容量为179.9 m Ah/g;2C倍率下仍保持了141.4 m Ah/g的放电比容量。  相似文献   

20.
采用水热法合成Li_4Ti_5O_(12)负极材料,研究材料在大倍率条件下的电化学性能。X射线衍射(XRD)分析结果表明所合成的Li_4Ti_5O_(12)材料晶体尺寸在纳米级。透射电子显微镜(TEM)分析结果表明材料的结晶粒度为50~100 nm。电化学充放电测试结果表明该材料在10 C倍率充放电时首次放电比容量达到269.9 m A·h/g,循环50次后稳定在177 m A·h/g左右,显示出优异的快速充放电性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号