首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This study assessed the incorporation of green liquor dregs, an inorganic solid waste from Kraft pulp mill, and flat glass cutting waste (FGCW) into red ceramic formulations. Since in Brazil sanitary landfills are still the main destination of industrial wastes such as those used in this research, a survey was conducted to identify the number of landfills in the region of origin of each waste and the amount of waste that could have this destination avoided. The effects of firing temperature and simultaneous incorporation of both industrial wastes were analyzed to optimize heat treatment and waste content in the formulation to manufacture red ceramic products. The influence of green liquor dregs and FGCW incorporation into clayey mass was evaluated varying waste content between 0 and 50 wt%. The specimens were prepared by uniaxial pressing, fired at 850 and 950 °C, and had their physical-mechanical properties and mineralogical and microstructural characteristics analyzed. The best results were obtained for the formulation with 10 wt% green liquor dregs and 30 wt% FGCW fired at 950 °C. This result highlights the potential of using green liquor dregs, a waste difficult to be recycled due to its chemical composition, associated with FGCW, which acts as a fluxing agent in ceramic formulations.  相似文献   

2.
《Ceramics International》2017,43(5):4674-4679
This work focuses on the synthesis of calcium silicate insulating material via solid state reaction using avian eggshell waste as alternative calcium source. The calcium silicate formulations were mixed in a molar ratio SiO2:CaO (1:1) and fired at 1100 °C for 24 h. The calcium silicate formulations were characterized by XRD, TG-DTA, dilatometry, SEM/EDS, and thermophysical properties (thermal diffusivity, heat capacity per unit volume, and thermal conductivity). The synthesized calcium silicate materials are composed mainly of wollastonite with minor amounts of larnite and rankinite. It was found that a processing of the avian eggshell waste (raw eggshell waste and calcined eggshell waste) had an influence on the thermophysical properties. Calcium silicate pieces were prepared by uniaxial pressing at 82 MPa, curing, and then testing to determine their use as thermal insulating material. The microstructure was evaluated by SEM. The results showed that both raw and calcined avian eggshell wastes could be used as an alternative calcium source in the calcium silicate formulation. It was found that the calcium silicate pieces reached low thermal conductivity values (0.252–0.293 W/mK). Thus, the developed calcium silicate materials using avian eggshell waste act as a good thermal insulation ceramic material.  相似文献   

3.
Biphasic calcium phosphate (BCP) has received much interest for making various bone substitutes since its physicochemical properties can be easily tailored by tuning its phase composition. Due to high temperature processing, it is hard to prepare BCP with nanoscale characteristics. In the present study, we have made an attempt to optimize the heat treatment parameters for the synthesis of BCP with nanoscale characteristics from eggshell derived hydroxyapatite (HA) through rapid thermal processing (RTP). To accomplish this, eggshell derived HA was prepared by wet precipitation method and subjected to RTP at 750°C and 1150°C for 3 and 10 minutes. For comparison we have also studied conventional calcination at 750°C and 1150°C for 3 hours. XRD, FTIR, SEM, EDX, HRTEM, and BET analyses were used to understand the effect of RTP and conventional calcination on eggshell derived HA. Our results indicate that eggshell derived HA on RTP at 1150°C for 3 minutes and 10 minutes can offer nanoscale BCP with good dissolution, bioactivity, cytocompatibility, and mesoporous nature. Hence, RTP can be a potential method to prepare BCP with nanoscale features for biomedical applications.  相似文献   

4.
《Ceramics International》2022,48(18):25905-25917
This study reports the fabrication of novel glass-ceramic foams for thermal insulation to minimize the energy consumption in the buildings. Different combinations of zeolite-poor rock/eggshell powders (with eggshell content varying from 0 to 20 wt%) have been used to produce the foams through alkali-activation and reactive sintering techniques. The produced glass-ceramic foams were characterized based on their structural, thermal, and mechanical characteristics. The heat treatment process and the foaming patterns are examined by a heating microscope, and the findings reveal an excellent foamability of the utilized alkali-activated mixture in the range of 800–950 °C. The microstructure and the pore size of the acquired foams are investigated using a scanning electron microscope (SEM) and computed tomography (CT) analysis. The crystallinity and phase composition of the prepared samples were investigated via X-ray diffraction (XRD). The experiment findings reveal that raising the eggshell content is favorable to gas production, but it affects the liquid phase creation resulting in inconsistent pore size distribution. The appropriate eggshell content is 4%, and the optimal heat treatment temperature is 900 °C. The produced ceramic foams possess a density ranging from 0.54 to 1 g/cm3, thermal conductivity around 0.07–0.4 W/mK, and compressive strength values between 1.2 and 6.7 MPa. The results indicate that the ceramic foams created could be a feasible choice for applications in constriction as thermal insulation materials.  相似文献   

5.
Continuous aluminum oxide-mullite-hafnium oxide (AMH) composite ceramic fibers were obtained by melt-spinning and calcination from polymer precursor that synthesized by hydrolysis of the aluminum isopropoxide, dimethoxydimethylsilane and hafnium alkoxide. Due to the fine diameter of 8–9 µm, small grain size of less than 50 nm and the composite crystal texture, the highest tensile strength of AMH ceramic fibers was 2.01 GPa. And the AMH ceramic fibers presented good thermal stability. The tensile strength retention was 75.48% and 71.49% after heat treatment at 1100 °C and 1200 °C for 0.5 h respectively, and was 61.57% after heat treatment at 1100 °C for 5 h. And the grain size of AMH ceramic fibers after heat treatment was much smaller than that of commercial alumina fibers even when the heat treatment temperature was elevated to 1500 °C, benefited by the grain size inhibition of monoclinic-HfO2 (m-HfO2) grains distributed on the boundary of alumina and mullite grains.  相似文献   

6.
《Ceramics International》2023,49(8):12381-12389
In the recent years, research on the development of hydroxyapatite (HA) using calcium from natural resources such as limestone, mammalian bones, marine shells and avian eggshells have been extensively studied. However, many studies focused on the properties of prestine HA without incorporation of dopants for strengthening effect. In this work, HA bioceramic was prepared using waste chicken eggshells calcium with addition of various concentrations of zinc dopant (1, 3 and 5 mol% Zn). In this work, the zinc-doped HA (ZnHA) was synthesized using a wet-chemical precipitation technique followed by oven drying and unixial pressing to formed green compacts. Pressureless sintering was carried out at 1200, 1250 and 1300 °C. The results showed that 5 mol% ZnHA (5ZnHA) exhibited the overall best properties after sintering at 1250 °C. The improvement in the fracture toughness was attributed to the formation of β-TCP phase when zinc ion was incorporated into HA, combined with enhanced densification. It was observed that the HA grains were coarser and more densely when sintered at 1250 °C, indicating that there was strong interaction between pores and grain boundaries. However, fracture toughness slightly declined after sintering at 1300 °C due to rapid and abnormal HA grain growth.  相似文献   

7.
Everyday millions of tons of eggshells are produced as biowaste around the world. Most of this waste is disposed of in landfills without any pretreatment. Eggshells in landfills produce odors and promote microbial growth as they biodegrade. The present invention provides an environmentally beneficial and cost-effective method of producing calcium phosphate bioceramics (hydroxyapatite or tricalcium phosphate) from eggshell waste. In this investigation, heat treatment produced solid state reactions between eggshell powders and dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) or calcium pyrophosphate (Ca2P2O7). When eggshell powders (CaO) and DCPD were heat treated at 1150 °C for 3 h, only a single hydroxyapatite (HA) phase was found; no diffraction peaks of starting materials and no β-TCP were observed. The XRD patterns of the product fabricated from raw eggshell powders (CaCO3) and Ca2P2O7 heat treated at 1100 °C for 3 h showed that almost only pure β-TCP remained with a trace amount of HA. The calcium phosphate ceramic synthesized from eggshell powders contains several important trace elements such as Na, Mg and Sr.  相似文献   

8.
Zawrah  M. F.  Badr  Hayam A.  Khattab  R. M. 《SILICON》2020,12(5):1035-1042

The recycling of industrial waste clays for production of an interesting ceramic product is the main goal of the present research work. Ceramic bodies were prepared using Feeders or Cyclons waste clays, sand and feldspar. 0.0, 15, 20, and 25 wt.% of sand were added at the expanse of kaolin (75-50 wt.%). Constant mass percent (25 wt.%) of feldspar was added for all ceramic compositions. The designed batches were sintered at 1200–1400 °C. Physical properties were determined by water displacement method. Phase composition and microstructure were investigated by x-ray diffraction and scanning electron microscope, respectively. The compressive strength was also determined. The results indicated that the ceramic bodies prepared from Cyclons’ waste clay exhibited higher physical and mechanical properties than that prepared from Feeders’ clay after sintering at 1400 °C. The addition of sand enhances the porosity, water absorption, bulk density and mechanical strength after sintering at 1400 °C due to the formation of mullite network and glassy phases.

  相似文献   

9.
《Ceramics International》2022,48(18):25849-25857
The continuous Nextel? 720 fiber-reinforced zirconia/alumina ceramic matrix composites (CMCs) were prepared by slurry infiltration process and precursor infiltration pyrolysis (PIP) process. The introduction of submicron zirconia powders into the aqueous slurry was optimized to offer comprehensively good sintering activity, high thermal resistance and good mechanical properties for the CMCs. Meanwhile, the zirconia and alumina preceramic polymers were used to strengthen the porous ceramic matrix through the PIP process. The final CMC sample achieved a high flexural strength of 200 MPa after one infiltration cycle of alumina preceramic polymer and thermal treatment at 1150 °C for 2 h. The flexural strength retention of the improved CMC sample was 104% and 89% respectively after thermal exposure at 1100 °C and 1200 °C for 24 h.  相似文献   

10.
《Ceramics International》2016,42(6):7118-7124
Tantalum carbide (TaC) was synthesized by polycondensation and carbothermal reduction reactions from an inorganic hybrid. Tantalum pentachloride (TaCl5) and phenolic resin were used as the sources of tantalum and carbon, respectively. FTIR of as-synthesized dried complexes revealed formation of Ta-O. Pyrolysis of the complexes at 800 °C/1 h under argon resulted in tantalum oxide which after heat treatment at 1000–1200 °C transformed to tantalum carbide. The mean crystallite size of the precursor-derived TaC ceramics was less than 40 nm and Ta and C elements were homogeneously distributed in the ceramic samples. Mechanism for formation of TaC ceramic was analyzed.  相似文献   

11.
Ceramizable heat-resistant organic adhesive (CHA) was prepared by using preceramic polymer polysiloxane as matrix, TiB2 ceramic powder and low melting point glass powder as additives. The curing mechanism, thermal stability properties, phase composition after pyrolysis, structural evolution of bonding layer and bonding mechanism of the adhesive were investigated by FTIR, TGA-DSC, XRD, SEM, FESEM and bonding strength tests. Results of bonding tests showed the maximum shear strength of the joints was 21 MPa when heat treatment at 1200 °C for 2 h in air. Polysiloxane resin acted as crosslinking adhesive at low temperatures and tended to convert to ceramic bonding layer at high temperatures, resulting from ceramization reaction with active fillers. The formation and growth of ceramic phase after heat treatment enhanced the thermal stability and bonding performance of the adhesive at high temperature.  相似文献   

12.
《Ceramics International》2016,42(9):10838-10846
Coatings of titania (TiO2) and "titania–hydroxyapatite" were prepared by oxidation of commercially pure titanium VT1-00 using induction heat treatment (IHT), followed by modification with colloidal hydroxyapatite (HAp) nanoparticles. The IHT treatment was performed at temperatures within 600–1200 °C for 300 s. According to the results of scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray fluorescent analysis (EDX), nanoindentation and in vitro testing, titania coatings of high morphological heterogeneity, and high mechanical properties and biocompatibility were formed on the titanium surface after IHT. The coatings were found to consist of nano- and submicron crystals of oval, needle-like, plate and prismatic shapes. A subsequent modification with HAp nanoparticles of the coated titanium substrate leads to accelerated formation of mechanically strong oxidebioceramic composite coatings. It was established that the porous oxide coatings modified with nanoparticles of HAp that were formed at temperatures from 800 to 1000 °C and holding for at least 30 s had a high biocompatibility.  相似文献   

13.
《Ceramics International》2017,43(11):8109-8118
Coal tar pitch (CTP) modified with silicon carbide nanoparticles (nSiC) was used as a carbon binder precursor for the manufacture of carbon materials. Carbon samples were prepared in the form of a composition consisting of synthetic coke, graphite and nSiC- modified CTP prior to heat treatment at temperatures from 800 °C to 2800 °C. The effect of ceramic nanofiller in CTP on oxidation resistance of carbon samples obtained at various temperatures was studied. Physical and mechanical properties of carbon samples obtained at 2000 °C and 2800 °C were analysed. nSiC presence in CTP was found to change the elevated temperature properties of carbon samples. The oxidation tests conducted at 600 °C in air showed a significant improvement of the resistance of carbon samples modified with small amount of nSiC and annealed at 2000 °C. Properties investigated included characteristics important for application of carbon materials for carbon electrode manufacturing, i.e., electrical and thermal conductivities as well as mechanical properties. Due to microstructural changes of carbon samples in the presence of nSiC filler physical and mechanical properties improved after annealing the samples at high temperature in comparison to unmodified carbon samples.  相似文献   

14.
The agro-industrial activities are responsible for the production of large amounts of solid wastes, which, so far, have found scarce reuse alternatives. Among the former, coffee bean beneficiation generates an equal amount of coffee husks whose highest reuse potential is as fuel. The resulting ashes are frequently an object of illegal covert disposal and a serious source of environmental impact. However, coffee husk ashes (CHA) are particularly rich in alkaline and alkaline-earth metals, and might be adequate to replace the traditional feldspars, which are used in high content as fluxes in clay-based ceramic formulations but are becoming scarce and costly. In this work, the fluxing effect of CHA additions to an industrial clay-based mixture was evaluated. Based on the characterization results and the mullite–silica–leucite phase diagram, additions of 5 to 20 wt.% CHA were made to the clay-based mixture and the resulting compositions were evaluated after sintering at temperatures between 1100 and 1200 °C (60 min soaking time). The results obtained show that firing temperatures near 1180 °C and ~ 10 wt.% CHA addition lead to linear shrinkage, water absorption and flexural strength values that fall within the range specified by floor tile standards (NBR 13817, EN 176 and ISO 13006), requiring no significant changes in processing parameters. Coffee husk ashes can thus advantageously replace feldspars in the role of fluxing material, with the potential to reduce not only natural ceramic raw material consumption, but also production and landfill costs as well as waste disposal area requirements.  相似文献   

15.
The aim of this work was the analysis of the experimental results of a transparent alumina (BMA15) ceramic which was fabricated by Spark Plasma Sintering (SPS) from nanopowder (BMA15, Baikowski Chimie, France), at different temperatures (1200°C, 1250°C, 1300°C). With the application of a maximum uniaxial pressure of 73 MPa during all the fabrication-cycle (more than 3 hours). We sought an optimal sintering temperature combining better optical and mechanical properties of our pellets. The sintered alumina (BMA15) has a crystalline and dense microstructure. The samples sintered at 1200°C exhibit the best optical properties, in particular: good real inline transmission (RIT) and an optical gap greater than those of the samples sintered at 1250°C and 1300°C. Due to their low density, the Young modulus of alumina sintered at 1200 °C, deduced by ultrasound, has a low value which is about 385 GPa. Similarly, its small grain size gives it a better Vickers hardness ~ 21 GPa. Therefore, the value of the coefficient of friction μ stabilizes around the mean value of 0.21.  相似文献   

16.
The microstructure and mechanical properties of CVI-Cansas-III/PyC/SiC composites were systematically investigated after heat treatment under high temperature argon atmosphere, ranging from 1000 °C to 1500 °C, for different time durations. The results showed that the Cansas-III fibres degraded with increasing heat treatment temperature, resulting in degradation of the fibre properties due to pyrolysis of the SiOC phase inside the fibres. The bending strength of the composites remained nearly constant upon heat treatment at 1000 °C and 1250 °C, while a decline in bending strength was observed upon increasing the heat treatment temperature and time, specifically at 1350 °C and above. Moreover, the composites maintained their pseudo-plastic fracture behaviour below 1450 °C, while displaying brittle fracture of the ceramic after 100 h of heat treatment at 1500 °C, due to the complete crystallisation of the fibres.  相似文献   

17.
Eggshell is a rich source of CaCO3 with a high purity content of more than 96.35% w/w and a potential raw material for calcium hydroxyapatite preparation. Mesoporous and nano-particulate calcium hydroxyapatite was prepared from duck eggshell from the chemical reaction with phosphoric acid followed by the calcinations at 800, 900, and 1000°C for 2 hours. The optimum condition to obtain the high purity calcium hydroxyapatite was by sintering calcium phosphate Ca3(PO4)2 at 1000°C for 2 hours. The average particle size, pore diameter, specific surface, and true density of the sample sintered at 1000°C for 2 hours were 101.93 ± 12.15 nm, 98.96 Å, 2.12 m2/g, and 3.02 g/cm3, respectively, appearing as a soft fine powder with a white color. The raw duck eggshell is a potential candidate as a bio-ceramic material to prepare calcium hydroxyapatite suitable for use in various bio-applications such as bone tissue engineering, drug and gene delivery, remineralizing agent in toothpaste, and bone void fillers for orthopedic and restoration.  相似文献   

18.
Sr-containing ceramic products produced from geopolymer, (Na, Sr)-GP, have been reported as excellent candidate materials for the immobilization of radionuclide 90Sr, despite sintering temperature at 1200°C. In this work, the product possessing the best immobilization performance (leaching rate of 1.29% for Sr2+) can be produced at 1000°C in the method of liquid-phase sintering via the addition of fluxing agent B2O3 at 2.0 wt% in the geopolymer precursor. The mechanical properties of the geopolymer precursor (Na, Sr)-GP were also enhanced via the promotion role of B2O3 to geopolymerization. It was revealed that the overall anti-leaching ability of the Sr-containing ceramic product not only depends on the microstructure of the loading substrate but also can be affected by the chemical state of radioactive strontium retention in the loading matrix.  相似文献   

19.
《Ceramics International》2020,46(17):26784-26789
Effect of sintering temperature on the physical and mechanical properties of synthesized B-type carbonated hydroxyapatite (CHA) over a range of temperature in CO2 atmosphere has been investigated. The B-type CHA in nano size was synthesized at room temperature by using a direct pouring wet chemical precipitation method. The synthesized CHA powders were subsequently consolidated by sintering treatment from 800 to 1100 °C. The sintered CHA samples were evaluated using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, X-ray fluorescence (XRF), carbon-hydrogen-nitrogen-sulfur-oxygen (CHNS/O) elemental analyzer, Field emission scanning electron microscopy (FESEM), and Vicker's indentation technique. The results obtained from XRD and FESEM indicated that the synthesized B-type CHA powders were nanometer in size. The crystallinity and crystallite size of the sintered CHA samples were increased due to increasing sintering temperature. The heat treatment between 800 °C and 1000 °C has resulted in coarsening and increased hardness of the sintered CHA samples. However, these properties began to deteriorate when sintering beyond 1100 °C due the formation of calcium oxide.  相似文献   

20.
Zirconia-alumina multiphase ceramic fibers with 80 wt% (Z80A20 fiber) and 10 wt% (Z10A90 fiber) proportions of zirconia were prepared via melt-spinning and calcination from solid ceramic precursors synthesized by controllable hydrolysis of metallorganics. The zirconia-alumina multiphase fibers had a diameter of about 10 µm and were evenly distributed with alumina and zirconia grains. The Z80A20 and Z10A90 ceramic fibers had the highest filament tensile strength of 1.78 GPa and 1.87 GPa, respectively, with a peak value of 2.62 GPa and 2.71 GPa. The Z80A20 ceramic fiber has superior thermal stability compared to the Z10A90 ceramic fiber and a higher rate of filament strength retention due to the stability in grain size. After heat treatment at 1100 °C, 1200 °C, and 1300 °C for 1 h respectively, the filament tensile strength retention rate of Z80A20 ceramic fibers was 87 %, 80 %, and 40 %. While Z10A90 ceramic fiber was fragile after being heated at 1300 °C. The results showed that the high zirconia content facilitated the fiber's thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号