首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferrite nanoparticles of basic composition Ni0.7-xZnxCu0.3Fe2O4 (0.0 ≤ x ≤ 0.2, x = 0.05) were synthesized through auto-combustion method and were characterized for structural properties using X-ray diffraction [XRD], scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy [FT-IR]. XRD analysis of the powder samples sintered at 600°C for 4 h showed the cubic spinel structure for ferrites with a narrow size distribution from 28 to 32 nm. FT-IR showed two absorption bands (v1 and v2) that are attributed to the stretching vibration of tetrahedral and octahedral sites. The effect of Zn doping on the electrical properties was studied using dielectric and impedance spectroscopy at room temperature. The dielectric parameters (ε'', ε″, tanδ, and σac) show their maximum value for 10% Zn doping. The dielectric constant and loss tangent decrease with increasing frequency of the applied field. The results are explained in the light of dielectric polarization which is similar to the conduction phenomenon. The complex impedance shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume.PACS: 75.50.Gg; 78.20; 77.22.Gm.  相似文献   

2.
Novel soft magnetic ferrite materials will play a crucial role in next-generation trillion-dollar sensor technologies related to 5G communications and internet of things as these materials can achieve improved wireless power/signal transfer efficiency with high operation frequency. In this work, Ni0.4Co0.25Zn0.35Fe2O4 ferrites with high permeability and low magnetic loss were prepared for RF and microwave device applications. Composition and microstructure control is crucial to obtain the desired magnetic and loss properties. CuO dopant (x = 0 wt% to 20 wt%) were employed during the synthesis of Ni0.4Co0.25Zn0.35Fe2O4 ferrite specimens to modify the microstructures, thus improving the magnetic properties of the ferrites. High value of measured relative permeability (μ’ of 4-10) and relatively low magnetic loss tangent ( of 0.01-0.1) has been achieved at frequency range between 100 and 800 MHz. Addition of CuO, especially up to 3 wt%, can cause a significant increase in permeability. Real part of the permeability of 3.87 and 10.9 has been achieved for undoped and 3 wt% CuO doped specimens, while noticeable reduction in magnetic losses has been observed for the doped sample measured at 400 MHz. The resonance frequency of synthesized ferrites has also been shifted into GHz range, when higher concentration of CuO dopants (>5 wt%) were employed.  相似文献   

3.
《Ceramics International》2020,46(5):6212-6216
0.02Pb(Sb1/2Nb1/2)O3-0.98Pb1-xBax(Zr0.53Ti0.47)O3 (PSN-PBxZT) ceramics with high Curie temperature and high piezoelectric properties were prepared by traditional solid state reaction measurement to meet the requirements for high temperature applications, and the crystal structure, dielectric, piezoelectric and ferroelectric properties were investigated. All the samples show a tetragonal crystal structure at room temperature and there was no noticeable change with the increasing of Ba2+ content. Doping of Ba2+ markedly improved piezoelectric properties of PSN-PZT, the maximum d33~560 pC/N, Tc ~317 °C at x = 0.05. Their outstanding piezoelectric properties will drive the development of high temperature industrial applications.  相似文献   

4.
Advanced film capacitors require polymers with high thermal stability, high breakdown strength, and low loss for high temperature dielectric applications. To fulfill such requirements, two polymer multilayer film systems were coextruded via the forced assembly technique. High glass transition temperature (T g) polycarbonate (HTPC, Tg = 165 °C) and polysulfone (PSF, Tg = 185 °C) were multilayered with a high dielectric constant polymer, poly(vinylidene fluoride) (PVDF), respectively. The PSF/PVDF system was more thermally stable than the HTPC/PVDF system because of the higher Tg for PSF. At temperatures lower than 170 °C, the HTPC/PVDF system exhibited comparable breakdown strength and hysteresis loss as the PSF/PVDF system. While at temperatures above 170 °C, the PSF/PVDF system exhibited a higher breakdown strength because of the higher Tg of PSF. The electric displacement-electric field (D-E) loop behavior of the PSF/PVDF system was studied as a function of temperature. Moreover, a melt-recrystallization process could further decrease the hysteresis loss for the PSF/PVDF system due to better edge-on crystal orientation. These results demonstrate that PSF/PVDF and HTPC/PVDF systems are applicable for high temperature film capacitors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47535.  相似文献   

5.
In this study, TiCrAlCN/TiAlN multilayer coatings were deposited on M2 high speed steel substrates by the Closed-Field Unbalanced Magnetron Sputtering system. The chemical composition, microstructure, morphology, mechanical and high temperature wear resistance properties of the coatings were characterized, analyzed and compared to the substrate. The high temperature wear tests were carried out under a load of 2 N at the lap (wear test distance) of 50 m and in dry sliding condition at Room Temperature (RT), 150, 300, 450, and 600 °C on atmospheric conditions. It has been found that the TiCrAlCN/TiAlN multilayer coatings have a higher wear resistance than the M2 substrate. The stable friction behavior and low friction tendency was determined at 600 °C. When the test temperature increased, the wear rates decreased. Narrow and smooth wear tracks and also the lowest wear rate were obtained at 600 °C.  相似文献   

6.
《Ceramics International》2023,49(16):26391-26396
Obtaining both high Curie temperature and large piezoelectric constant simultaneously is of great significance for the application of actuators and sensors. In this research, the piezoelectric ceramics of (0.9-x)BiFeO3-xPbTiO3-0.1Ba(Zr0.5Ti0.5)O3 (BF-xPT-0.1BZT, x = 0.29, 0.30, 0.31 and 0.32) were fabricated by the traditional solid-state reaction method. BF-xPT-0.1BZT ceramics exhibit the tetragonal perovskite structure without detectable second phases, and the tetragonality c/a ratio and the tolerance factor of ceramics are about 1.03 and 0.98, respectively. SEM images reveal that ceramics are well densified with the average grain size of 5–12 μm. The Curie temperature TC of BF-xPT-0.1BZT ceramics is about 490–509 °C, slightly changing with the variation of PT content. The excellent comprehensive dielectric and piezoelectric properties are achieved for BF-0.31PT-0.1BZT ceramics with dielectric constant εr (1 kHz), tanδ, piezoelectric constant d33 and TC of 1001, 0.008, 230 pC/N and 509 °C, respectively. The significant enhancement of piezoelectric constant in the x = 0.31 sample is attributed to the enlargement of grain size. Moreover, the d33 and the planar coupling coefficient kp remain stable in the elevated temperature range of 200–400 °C, and the fluctuations are only 2% /℃ and 0.007% /℃, respectively, both of which are superior to that of BS-PT based piezoelectric ceramics. Our results indicate that BF-0.31PT-0.1BZT ceramics with high TC, large d33 and good thermal stability possess great potential for high temperature piezoelectric applications.  相似文献   

7.
Advances in technology have provided fresh generations of stiff polypropylene block copolymers for gravity sewerage applications. The aim of this study is to further enhance the stiffness of these materials through the incorporation of inorganic fillers. In this study, three talc filled PP and one glass fiber filled PP composites were characterized in order to be used as a middle layer in a three-layer sewage pipe. The obtained results showed an increase of approximately more than 100% and 250% in tensile and flexural moduli by the use of 30%–50 wt% talc-filled PP and 30 wt.% glass fiber-filled PP, respectively. This high increase in the rigidity of the material would allow manufacturing pipes with improving ring stiffness. Composites filled with 30 wt% talc or glass fiber showed good filler-matrix interaction and good filler distribution and dispersion. However, reduced filler-matrix interaction was observed in the case of the composite filled with 50 wt% talc. In addition, the use of Differential Scanning Calorimetry analysis revealed that the addition of fillers enhanced the crystallization temperature of the polypropylene matrix. Furthermore, Thermogravimetric Analysis showed that the high modulus PP grade retained its thermal stability in the various composites.  相似文献   

8.
高温高盐中渗油藏聚合物驱可行性研究   总被引:1,自引:0,他引:1  
通过黏度测试方法,研究了温度、剪切作用等因素对2种耐温抗盐聚合物(高分子量部分水解聚丙烯酰胺HPAM和疏水缔合聚合物SSRAP)溶液性能的影响。并利用岩心驱替实验,研究了二者的渗流特征以及驱油效率。结果表明,SSRAP在高温高矿化度条件下仍具有较好的增黏能力,表现出较好的耐温耐盐抗剪切性能。在中渗多孔介质中,SSRAP溶液形成动态可逆的物理网络结构,具有良好的注入性,同时又能够建立较高的流动阻力,达到水驱流度控制的目的。在渗透率为200×10-3μm2左右的多孔介质中,1 750 mg/L的SSRAP溶液提高采收率幅度达到20%以上。因此,利用SSRAP在高温高盐中渗油藏开展聚合物驱具有较高的可行性。  相似文献   

9.
Multilayered ceramics seem very promising for applications at very high temperatures in an oxidising environment. Actually, they present lower cost and better oxidation resistance than many conventional ceramic composites.  相似文献   

10.
An effective scale control program for seawater RO is widely recognized as an important factor in ensuring trouble free and cost effective operation. This is especially important under the high feed water pH and temperature conditions found in Southern Europe and Middle East.

In addition, regulatory issues concerning maximum acceptable boron levels in drinking and irrigation water necessitate the growing need to operate plants at higher feed water pH. Operating at increased pH increases boron rejection but also increases the scaling tendencies of the water. This can lead to calcium carbonate and magnesium hydroxide precipitation in the membranes.

A complete scale control program needs to control calcite and brucite saturation at the maximum operating reject pH and temperature. Antiscalant chemistry, optimum dose rate as well as accurate monitoring and control of the scale inhibitor are key factors in long-term cost effective “scale free” operation.

This paper details the operating strategies and scale control issues related to both single and two pass seawater RO plants operating at elevated feed water pH and temperature.  相似文献   


11.
Na0.5Bi4.5-xCexTi4O15 (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) lead-free piezoelectric ceramics with high Curie temperatures are fabricated using the conventional solid-phase method. The effects of the Ce content on the phase structures, morphologies, and electrical properties of the Na0.5Bi4.5-xCexTi4O15 ceramics are systematically investigated. The appropriate content of Ce increases b/a and c/a and induces the distortion of the crystal structure. The increased b/a leads to a transverse asymmetry of the Na0.5Bi4.5-xCexTi4O15 ceramics, which facilitates the dipole flipping, thus enhancing the piezoelectric properties (d33 = 20 pC/N). Although the improved c/a increases the degree of tetragonality of the Na0.5Bi4.5-xCexTi4O15 ceramic, which decreases the Curie temperature (TC), the TC values of all samples are higher than 600°C, considerably higher than the practical application temperature. The Ce doping significantly reduces the dielectric loss of the sample and increases its dielectric performance. The improvements in electric properties by the cerium doping can expand its use in high-temperature environments for oilfield logging, aerospace, and military applications.  相似文献   

12.
Large-strain multilayer actuators (MLAs) were fabricated by tape-casting 0.91(Na1/2 Bi1/2)TiO3–0.06BaTiO3–0.03AgNbO3 (NBT-BT–3AN) lead-free incipient piezoceramics co-fired with Pt inner electrodes. Microstructures, dielectric properties, unipolar and bipolar strain, as well as fatigue properties of the MLAs were investigated. It was found that the actuator consisting of 15 ceramic layers with individual thicknesses of 114 μm could output a large unipolar strain of 0.3% and a dynamic displacement of 5 μm at 6 kV/mm at room temperature. It exhibited excellent cycling stability and provided a high strain of 0.23% after 107 cycles at 6 kV/mm. Moreover, these MLAs still can deliver a strain of 0.20% at 125°C.  相似文献   

13.
BiFeO3-PbZrO3-PbTiO3 ternary solid solution system was investigated for the development of piezoelectric ceramics with high Curie temperatures. The search for the morphotropic phase boundary (MPB) compositions in this ternary system started from mixing two MPB compositions: 0.70BiFeO3-0.30PbTiO3 and 0.52PbZrO3-0.48PbTiO3. The content of PbTiO3 was then further fine tuned in order to reach the appropriate volume fraction between the rhombohedral and tetragonal phases in the sintered ceramics. It was observed that the sintering temperature has a profound impact on the density, grain morphology, dielectric and ferroelectric properties of the ceramics. The composition that displays the best combined structure and properties was identified to be 0.648BiFeO3-0.053PbZrO3-0.299PbTiO3, with a Curie temperature TC of 560 °C, a remanent polarization Pr of 15.0 μC/cm2, and a piezoelectric coefficient d33 of 64 pC/N.  相似文献   

14.
BiFeO3-BaTiO3 ceramics are promising lead-free piezoelectric ceramics due to their high piezoelectric properties and high Curie temperature, but their high leakage current density makes the poling difficult. In this study, a decreased leakage current density by three orders of magnitude was obtained in Bi0.5Na0.5TiO3 (BNT) added 0.67BiFeO3-0.33BaTiO3 (BF-BT) ceramics. It was found that the largely improved insulating properties benefit from the reduced oxygen vacancies and weak reduction of Fe3+ to Fe2+ as confirmed by photoluminescence and X-ray photoelectron spectroscopy measurements, thereby contributing to high-temperature and high-field poling. In addition, the introduction of BNT leaded to increased grain size. Due to the grown grains as well as reduced oxygen vacancies and Fe2+, enhanced insulating and optimal piezoelectric properties with Pr = 24.2 µC/cm2, d33 = 183 pC/N, kp = 0.28, and TC = 467°C were achieved in BF-BT-0.05BNT ceramics.  相似文献   

15.
A new more insulated and faster responding plate thermometer (PT) is introduced, which has been developed for measurements particularly in air at ambient temperature. It is a cheaper and more practical alternative to water‐cooled heat flux meters (HFMs). The theory and use of PTs measuring incident radiation heat flux and adiabatic surface temperature are presented. Comparisons of measurements with PTs and HFMs are made. Finally, it is concluded that incident radiation in ambient air can be measured with HFMs as well as with the new insulated type of PT. In hot gases and flames, however, only PTs can be recommended. At elevated gas temperatures, convection makes measurements with HFMs difficult to interpret and use for calculations. However, they can be used in standard or well‐defined configurations for comparisons.  相似文献   

16.
稠油高温相对渗透率实验数据处理包括水热物性参数计算、实验数据光滑插值、模型求解,这些过程依靠手工计算繁琐,效率低。常规相对渗透率数据处理方法拟合函数单一,适应性差。为此采用了Borland C++编制了稠油蒸汽驱油、湿氮气驱油和热水驱油三种实验条件下的相对渗透率数据处理计算软件,提供了多种数据拟合和处理方法,并且考虑了实验仪器死体积中原油产出非活塞驱、压力滞后、数据波动、数据异常等因素的影响。该软件可以提高高温相渗数据处理的效率和准确性,易于实现数据处理的规范化。  相似文献   

17.
The synthesis of a p‐toluidine/formaldehyde (PTF) resin was performed, and the effects of the molar ratio of the individual monomers and the polymerization conditions on the structure of the PTF resin were studied. Fourier transform infrared and 13C‐NMR spectra were used to characterize the PTF. Wide‐angle X‐ray diffraction patterns revealed the crystalline structures of various PTFs. Polarized optical microscopy revealed that the molar ratio of the monomers had a strong effect on the crystalline morphologies. A longer polymerization time turned out a polymer with a higher intrinsic viscosity and molecular weight, which led to differences in the proton conductivity. All of the PTFs showed a higher proton conductivity than a commercial Nafion membrane at 90–100°C and 0% relative humidity. The proton conductivity of the PTF series could be improved by sulfonation with sulfuric acid and could be maintained after blending with polyurethane. Pure methanol could be used as a fuel source because of the insolubility and nonwetting properties of PTF in methanol to increase the output current density for a PTF membrane electrode assembly. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

18.
With increasing demand of high-temperature piezoelectric devices and growing concern over environment protection, a feasible reduction in lead from lead-based high Curie temperature piezoelectric materials are desperately needed. Herein, a new system of lead-reduced Bi(Ni2/3Ta1/3)O3-PbTiO3 (BNT-PT) ferroelectric ceramics is fabricated by a conventional solid-state sintering process. The phase transition behaviors as a function of composition and temperature, electrical properties, as well as the domain configurations from a microscopic level have been investigated in detail. The results indicate that crystal structures, phase transition behaviors, and electric properties of BNT-PT ceramics can be affected significantly by the content of BNT counterpart. Dielectric measurements show that xBNT-(1−x)PT ceramics transfer from the normal ferroelectrics to the relaxor ferroelectrics at compositions of x = 0.3-0.35. The BNT-PT ceramics exhibit high Curie temperature TC ranging from 474 to 185°C with the variation in BNT content. The relative dielectric tunability nr also rises from only 0.65% for 0.10BNT-0.90PT to 50.23% for 0.40BNT-0.60PT with increasing BNT content. The tetragonal-rich composition 0.30BNT-0.70PT ceramic possesses the maximum remnant polarization of Pr ~ 34.9 μC/cm2. Meanwhile, a highest piezoelectric coefficient of d33 ~ 271 pC/N and a high field piezoelectric strain coefficient of  ~ 560 pm/V are achieved at morphotropic phase boundary (MPB) composition of 0.38BNT-0.62PT. The maximum value of strain ~0.31% is obtained in the 0.36BNT-0.64PT ceramic. The largest electromechanical coupling coefficient kp is 44.5% for 0.37BNT-0.63PT ceramic. These findings demonstrate that BNT-PT ceramics are a system of high-performance Pb-reduced ferro/piezoelectrics, which will be very promising materials for piezoelectric devices. This study offers an approach to developing and exploring new lead-reduced ferroelectric ceramics with high performances.  相似文献   

19.
This study focuses on the chemistry, thermal stability, and electrical conductivity of low/intermediate pyrolysis temperature (700?900 °C) polysiloxane derived ceramics. These ceramics were modified with additional carbon derived from divinylbenzene (DVB) added to the precursor. Their electrical properties were investigated for potential uses in micro-electrical mechanical systems (MEMS) and anodes for lithium batteries. The microstructure and chemical composition was investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS); thermogravimetric analysis (TGA) provided insight into the thermal stability; and electrochemical impedance spectroscopy (EIS) into the electrical properties of the material. The increase of pyrolysis temperature and carbon content lead to an enhancement of the electrical conductivity, higher than previously reported values for intermediate pyrolysis temperature SiOC polymer derived ceramics. A limit of the amount of DVB that can be added to PHMS to produce a hybrid precursor has also been obtained.  相似文献   

20.
High-performance room temperature-cure epoxy structural adhesives utilizing simplified formulation are developed. The developed structural adhesive consists of diglycidyl ether of bisphenol A (DGEBA) and novolac epoxy blend as a base resin, micrometer-sized silica particles as a reinforcing filler, and triethylenetetramine as a curing agent. The developed ambient temperature-cure epoxy structural adhesive with optimized formulation exhibits outstanding properties including high glass transition temperature of 95°C, high thermal stability with degradation temperature at 5% weight loss of 364°C, exceptionally high rubbery plateau modulus of 320 MPa, good flame-retardant characteristics with limiting oxygen index of 40, and high single lap shear strength for single lap steel-steel bonded joint of 548 MPa at the temperature of 80°C. The silica-filled DGEBA/novolac epoxy composite adhesive is a potential candidate for applying as a structural adhesive for construction with long-term durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号