首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BN-nanoparticle-containing SiC-matrix-based composites comprising SiC fibers and lacking a fiber/matrix interface (SiC/BN + SiC composites) were fabricated by spark plasma sintering (SPS) at 1800°C for 10 min under 50 MPa in Ar. The content of added BN nanoparticles was varied from 0 to 50 vol.%. The mechanical properties of the SiC/BN + SiC composites were investigated thoroughly. The SiC/BN + SiC composites with a BN nanoparticle content of 50 vol.%, which had a bulk density of 2.73 g/cm3 and an open porosity of 5.8%, exhibited quasiductile fracture behavior, as indicated by a short nonlinear region and significantly shorter fiber pullouts owing to the relatively high modulus. The composites also exhibited high strength as well as bending, proportional limit stress, and ultimate tensile strength values of 496 ± 13, 251 ± 30, and 301 MPa ± 56 MPa, respectively, under ambient conditions. The SiC fibers with contents of BN nanoparticles above 30 vol.% were not severely damaged during SPS and adhered to the matrix to form a relatively weak fiber/matrix interface.  相似文献   

2.
The paper presents experimental characterization and theoretical predictions of elastic and failure properties of continuous carbon fiber reinforced silicon carbide (C/C-SiC) composite fabricated by Liquid Silicon Infiltration (LSI). Its mechanical properties were determined under uniaxial tensile, compression, and pure shear loads in two sets of principal coordinate systems, 0°–90° and ±45°, respectively. The properties measured in the 0°–90° coordinate system were employed as the input data to predict their counterparts in the ±45° coordinate system. Through coordinate transformations of stress and strain tensors, the elastic constants and stress-strain behaviors were predicted and found to be in good agreement with the experimental results. In the same way, three different failure criteria, maximum stress, Tsai-Wu, and maximum strain, have been selected for the evaluation of the failure of C/C-SiC as a type of genuinely orthotropic material. Based on the comparisons with experimental results, supported by necessary practical justifications, the Tsai-Wu criterion was found to offer a reasonable prediction of the strengths, which can be assisted by the maximum stress criterion to obtain an indicative prediction of the respective failure modes.  相似文献   

3.
Thanks to their high energy density and thermal conductivity, metallic Phase Change Materials (mPCM) have shown great potential to improve the performance of thermal energy storage systems. However, the commercial application of mPCM is still limited due to their corrosion behavior with conventional container materials. This work first addresses on a fundamental level, whether carbon-based composite-ceramics are suitable for corrosion critical components in a thermal storage system. The compatibility between the mPCM AlSi12 and the Liquid Silicon Infiltration (LSI)-based carbon fiber reinforced silicon carbide (C/C-SiC) composite is then investigated via contact angle measurements, microstructure analysis, and mechanical testing after exposure. The results reveal that the C/C-SiC composite maintains its mechanical properties and microstructure after exposure in the strongly corrosive mPCM. Based on these results, efforts were made to design and manufacture a container out of C/C-SiC for the housing of mPCM in vehicle application. The stability of the component filled with mPCM was proven nondestructively via computer tomography (CT). Successful thermal input- and output as well as thermal storage ability were demonstrated using a system calorimeter under conditions similar to the application. The investigated C/C-SiC composite has significant application potential as a structural material for thermal energy storage systems with mPCM.  相似文献   

4.
Short carbon fiber reinforced polymers (CFRP) are successfully prepared by transfer moulding technology. For this purpose, compounds on the basis of novolac/urotropin with different 6 mm chopped carbon fibers and silicon powder contents are produced utilizing a laboratory tempered sigma-blade kneader. These compounds are then shaped into 46 × 8 × 3 mm3 CFRP specimens using a transfer moulding machine. Depending on the material composition, the conversion to C/C-SiC composites is performed through liquid silicon infiltration (LSI) process or inner siliconization. First, the short fiber content is varied between 30 and 50 wt% and its influence on the process and properties of the composites is studied. Second, an investigation of the inner siliconization through the co-mixing of silicon powder (1-23 wt% in CFRPs) during the compound production as well as a comparison with the external silicon infiltration process are presented and discussed. According to the results, the best mechanical properties are achieved at a fiber content of 40 wt% in the case of the external silicon infiltration and at silicon content below 14 wt% for composites produced by the inner siliconization process.  相似文献   

5.
Carbon fiber reinforced carbon-silicon carbide (C/C-SiC) sandwich structures have been developed using the Liquid Silicon Infiltration process and the in situ joining method. They offer high mass-specific stiffness, low thermal expansion, and high environmental stability. Potential application areas are highly precise satellite structures, like optical benches. In this study, sandwich samples were manufactured using prepregs based on 2D carbon fibre fabrics and a phenolic resin precursor. Carbon fibre reinforced polymer preforms for folded and grid-cores, as well as for the skin panels were manufactured using autoclave technique. In the second step, the sandwich components were pyrolyzed, leading to C/C preforms. For the build-up of the sandwich samples, two skin panels were joined to a core structure and subsequently, the resulting C/C sandwich preform was siliconized. C/C-SiC sandwich samples were tested under shear load. Shear strength, modulus, and fracture strain were determined and compared to the results obtained by analytical calculation. The shear properties were dependent on the fiber orientation in the core structure as well as on the core type and orientation. The sandwich shear stiffness obtained in the tests was close to the expected theoretical values, calculated on the basis of the material properties and the core geometry.  相似文献   

6.
This article addresses effects of weave defects in an angle‐interlock C‐fiber preform on the tensile properties of the resulting fully processed C‐fiber/SiC‐matrix composite. For this purpose, a preform was intentionally sheared in a controlled manner after weaving. The resulting distortions were quantified by analyzing high‐resolution images of the preform surface after the first step of matrix processing, while the tows were still clearly visible. Comparisons are made of tensile test results on specimens cut from this composite panel and from a pristine panel in select loading orientations. Strain maps obtained by digital image correlation are used to identify local strain variations that are attributable to weave defects. The results are discussed in terms of: (i) the shear‐normal coupling that arises in loading orientations of present interest, and (ii) the geometric effects of tow misalignment on tow continuity along the specimen gauge length. The composite is found to perform in a robust manner, in the sense that the tensile properties are not sensitive to the presence of the defects.  相似文献   

7.
10,12-Pentacosadiynoic acid (PCDA) monomers were mixed with polyurethane (PU) or poly(ethylene oxide) (PEO) and the mixtures were electrospun to obtain composite nanofibers that were then photopolymerized via ultraviolet radiation, resulting polydiacetylene (PDA) in the nanofibers. The PDA demonstrated color-changing properties in the presence of Escherichia coli, which exhibited potential for developing flexible colorimetric biosensors for medical textiles. Phase separation was found in the PEO–PDA fibers, resulting in amorphous PEO accumulation at the fiber surface. In contrast, the PU–PDA fibers demonstrated a homogeneous microstructure throughout the fibers. Tensile test results suggested a molecular orientation in the PU–PDA fibers that significantly improved the mechanical properties of the fibers. The presence of PDA in the matrix polymer reduced the overall strength and breaking elongation of both composite nanofibers in comparison to 100% PEO and PU fibers. A single PU–PDA fiber showed significantly higher stiffness and modulus than a single PEO–PDA fiber. Force–distance curve analysis suggested that the PU–PDA fibers exhibited an elastic deformation. In a comparison, the PEO–PDA fibers were brittle and showed low modulus. The results of structural and mechanical properties suggest that the PU–PDA nanofibers are a promising composite for developing nonadherent, durable, and flexible colorimetric biosensors used in medical textiles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47877.  相似文献   

8.
Carbon/Carbon (C/C) composites derived from the thermoplastic polymer polyetherimide (PEI) were pyrolized up to 1000 °C, subsequently carbonized in inert atmosphere up to 2200 °C and afterwards infiltrated with liquid silicon. The investigation of fibers and matrix with Raman microspectroscopy revealed, that an increased carbonization temperature leads to an increased carbon order as well as an incipient stress-induced graphitization of the carbon matrix close to the fiber surfaces at 2200 °C. The derived C/C-SiC samples show a maximum flexural strength of 180 MPa with C/C composites treated at 2000 °C and monotonically increasing Young’s moduli ranging from 49 GPa with C/C preforms treated at 1600 °C up to 59 GPa after carbonization at 2200 °C. The carbon fiber strength was evaluated with a single fiber tensile test, which showed a monotonically increased Young’s modulus and a decrease of the strength after carbonization at 2200 °C.  相似文献   

9.
B4C–TiB2–SiC composites toughened by composite structural toughening phases, which are the units of (TiB2–SiC) composite, were fabricated through reactive hot pressing with B4C, TiC, and Si as raw materials. The units of (TiB2–SiC) composite with the size of 10‐20 μm are composed of interlocking TiB2 and SiC with the size of 1‐5 μm. The addition of TiC and Si can effectively promote the sintering of B4C ceramics. The relative densities of all the B4C composites with different contents of TiB2 and SiC are close to completely dense (98.9%‐99.4%), thereby resulting in superior hardness (33.1‐36.2 GPa). With the increase in the content of TiB2 and SiC, the already improved fracture toughness of the B4C composite continuously increases (5.3‐6.5 MPa·m1/2), but the flexure strength initially increases and then decreases. When cracks cross the units of the (TiB2–SiC) composite, the cracks deflect along the interior boundary of TiB2 and SiC inside the units. As the crack growth path is lengthened, the crack propagation direction is changed, thereby consuming more crack extension energy. The cumulative contributions improve the fracture toughness of the B4C composite. Therefore, the composite structural toughening units of the (TiB2–SiC) composite play an important role in reinforcing the fracture toughness of the composites.  相似文献   

10.
C/C-SiC composites with highly textured pyrolytic carbon (HT PyC) were prepared by a combining chemical vapor infiltration and liquid silicon infiltration. The effect of HT PyC graphitization before and after 2327 and 2723 K on C/C-SiC composites was investigated. The mechanical properties decreased with increasing graphitization temperature, but graphitization treatment changed the fracture behavior from brittle like to pseudo-ductile. The decrease in bending strength from 306.21 to 243.69 MPa resulted from the weak interfacial bonding between HT PyC and fiber, and the good orientation of graphite layers. The crack at border of fiber bundle and longitudinal crack in HT PyC shortened the path of crack propagation, resulting in fracture toughness decrease from 21.11 to 14.72 MPa·m1/2. A more pseudo-ductile behavior was due to the longer pull-out of fibers, the better orientation of graphite layers, the sliding of sublayers, and the deflection and propagation caused by the transverse cracks.  相似文献   

11.
The hot pressing process of monolithic Al2O3 and Al2O3-SiC composites with 0-25 wt% of submicrometer silicon carbide was done in this paper. The presence of SiC particles prohibited the grain growth of the Al2O3 matrix during sintering at the temperatures of 1450°C and 1550°C for 1 h and under the pressure of 30 MPa in vacuum. The effect of SiC reinforcement on the mechanical properties of composite specimens like fracture toughness, flexural strength, and hardness was discussed. The results showed that the maximum values of fracture toughness (5.9 ± 0.5 MPa.m1/2) and hardness (20.8 ± 0.4 GPa) were obtained for the Al2O3-5 wt% SiC composite specimens. The significant improvement in fracture toughness of composite specimens in comparison with the monolithic alumina (3.1 ± 0.4 MPa.m1/2) could be attributed to crack deflection as one of the toughening mechanisms with regard to the presence of SiC particles. In addition, the flexural strength was improved by increasing SiC value up to 25 wt% and reached 395 ± 1.4 MPa. The scanning electron microscopy (SEM) observations verified that the increasing of flexural strength was related to the fine-grained microstructure.  相似文献   

12.
Cf/SiC-ZrC composites with different amounts and distributions of ZrC were fabricated by polymer impregnation and pyrolysis. The effects of the ZrC amount and distribution on the microstructural, mechanical, and ablation properties of Cf/SiC-ZrC composites were investigated. Cf/SiC-ZrC composites obtained by the alternating infiltration of ZrC organic precursors and polycarbosilane groups exhibit good tensile strength (240 ± 17.7 MPa) because the ZrC and SiC matrix can mix evenly. However, Cf/SiC-ZrC composites using only ZrC organic precursor infiltration show a low tensile strength (191 ± 16.6 MPa) because more defects can be introduced into the composites. Ablation characterization by a 30 kW plasma wind tunnel for 60 seconds showed that the Cf/SiC-ZrC composites with the highest amount of ZrC matrix (67.8 wt.%) possessed the lowest linear erosion rate of 4 μm/s because liquid SiO2 could fill the porous ZrO2 to form a homogenous protective layer. Nevertheless, the Cf/SiC-ZrC composites with a relatively high ZrC amount (55.3 wt.%) exhibited a poorer ablation performance compared to that of Cf/SiC-ZrC composites with a low ZrC amount (38.7 wt.%).  相似文献   

13.
A novel methodology combining multiscale mechanical testing and finite element modeling is proposed to quantify the sintering temperature‐dependent mechanical properties of oxide matrix composites, like aluminosilicate (AS) fiber reinforced Al2O3 matrix (ASf/Al2O3) composite in this work. The results showed a high‐temperature sensitivity in the modulus/strength of AS fiber and Al2O3 matrix due to their phase transitions at 1200°C, as revealed by instrumented nanoindentation technique. The interfacial strength, as measured by a novel fiber push‐in technique, was also temperature‐dependent. Specially at 1200°C, an interfacial phase reaction was observed, which bonded the interface tightly, as a result, the interfacial shear strength was up to ≈450 MPa. Employing the measured micro‐mechanical parameters of the composite constituents enabled the prediction of deformation mechanism of the composite in microscale, which suggested a dominant role of interface on the ductile/brittle behavior of the composite in tension and shear. Accordingly, the ASf/Al2O3 composite exhibited a ductile‐to‐brittle transition as the sintering temperature increased from 800 to 1200°C, due to the prohibition of interfacial debonding at higher temperatures, in good agreement with numerical predictions. The proposed multiscale methodology provides a powerful tool to study the mechanical properties of oxide matrix composites qualitatively and quantitatively.  相似文献   

14.
The electrical properties of carbon/carbon (C/C) and carbon/carbon-silicon carbide (C/C-SiC) ceramic composites were measured. The results show that the capacitance decreases rapidly with an increase in frequency and it becomes constant above a frequency of 500 kHz, whereas the dissipation factor increases with increasing frequency. C/C-SiC composites give higher value than C/C composites due to the presence of microcracks.  相似文献   

15.
Composite materials formulated with a natural polyphenolic matrix (commercial tannin adhesive made from quebracho tannin extract), pine woodflour as reinforcing material, and hexamethylenetetramine as hardener were prepared and tested. Scanning electron microscopy of fractured samples was used to analyze the efficiency of the wetting and adhesion of the filler to the surrounding matrix. Thermogravimetric analysis was used in the thermal characterization of the woodflour and the tannin extract. Flexural, compression, and dynamic‐mechanical tests were performed on composites to study the relationship of the filler content and particle size with the composite final properties. Moreover, the influence of the moisture content on the physical and mechanical properties of the different composites was analyzed. Results indicated that the mechanical properties were severely affected by the absorbed moisture. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3074–3082, 2004  相似文献   

16.
C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
以4种纤维含量相同(32%,体积分数,下同),用化学气相渗透(chemical vapor infiltration,CVI)法制备了4种密度的碳纤维增强碳(carbon fiber reinforced carbon,C/C)多孔体,基体炭含量约20%~50%.利用液相渗硅法(liquid silicon infiltration,LSI)制备了C/C-SiC复合材料,研究了C/C多孔体对所制备的C/C-SiC复合材料微观结构和弯曲性能的影响.结果表明:不同密度的C/C多孔体反应渗硅后,复合材料的物相组成均为SiC,C及单质Si;随着C/C多孔体中基体炭含量的增加,C/C-SiC复合材料中SiC含量逐渐减少而热解炭含量逐渐增加.C/C-SiC复合材料弯曲强度随着材料中残留热解炭含量增加而逐渐增加,热解炭含量为约42%的C/C多孔体所制备的C/C-SiC复合材料的弯曲强度最大,达到320 MPa.  相似文献   

17.
C/C-SiC composites were fabricated by a combined process of chemical vapor deposition (CVD), slurry infiltration(SI), and precursor infiltration and pyrolysis (PIP). The microstructure and mechanical behavior were investigated for the dense C/C-SiC composites before and after high-temperature heat treatment. The results indicated that the sintering of the SiC matrix and the migration of the SiC matrix/fiber bundles weak interface occurred after high-temperature heat treatment at 1900 ℃. The SiC sintering resulted in an increase in the flexural strength of the C/C-SiC composites from 298.9 ± 35.0 MPa to 411.1 ± 57.3 MPa. The migration of the weak interface changed the direction of crack propagation, making the fracture toughness of the C/C-SiC composites decrease from 13.3 ± 1.7 MPa⋅m 1/2 to 9.02 ± 1.5 MPa⋅m 1/2.  相似文献   

18.
Carbon fiber reinforced ceramic matrix composites (C/C-SiC composites) were fabricated using a type of high-char-yield phenolic resin with the char yield of 81.17 wt.%. Firstly, the fabric prepreg was prepared by spreading the phenolic resin solution onto the two dimensional carbon fiber plain weave fabric and dried consequently. Afterward, the resin was cured and then the carbon fiber reinforced polymer (CFRP) was pyrolyzed to get amorphous carbon. Finally, C/C-SiC composites were obtained through liquid silicon infiltration (LSI) process. SEM micrographs showed that the Si/SiC area was homogeneously dispersed in the matrix, and during the siliconization process, a layer of SiC was formed along the surface of carbon fibers or carbon matrix. The fiber volume of CFRP was about 40 vol.%, which was much lower than other studies. XRD result indicated that only β-SiC type was formed. The result of X-ray computed tomography clearly showed the structure changes before and after the melt infiltration process. Mechanical property test showed that the composites had fracture strength of 186 ± 23 MPa, and a flexural modulus of 106 ± 8 GPa.  相似文献   

19.
This study was conducted due to the necessity for improving the processability of commingled yarns during textile processing, in particular dense 3D preform weaving. Open structure of the commingled yarns caused higher production stops. As a possible solution, GF/PP commingled yarns with different twisting levels were produced. Effect of twisting on the mechanical properties of commingled yarns and on their compression molded UD composites are determined. Further tests were executed about yarn/yarn and yarn/metal friction of twisted commingled yarns, which are important properties during textile processing. Theoretical approaches such as a yarn model with linear bar elements and lamina equation with an equivalent angle distortion of over‐delivery proved useful to relate the structural parameters and mechanical properties. As a result, twisting did not significantly affect the modulus of elasticity of UD‐composites, however, the tensile strength of UD‐composites were reduced by further processing even without twisting. Therefore, small twisting levels can be applied on commingled yarns to improve processability of dense preforms without significantly affecting the mechanical performance. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
2维C/SiC复合材料的拉伸损伤演变过程和微观结构特征   总被引:1,自引:0,他引:1  
通过单向拉伸和分段式加载-卸载实验,研究了二维编织C/SiC复合材料的宏观力学特性和损伤的变化过程.用扫描电镜对样品进行微观结构分析,并监测了载荷作用下复合材料的声发射行为.结果表明:在拉伸应力低于50MPa时,复合材料的应力-应变为线弹性;随着应力的增加,材料模量减小,非弹性应变变大,复合材料的应力-应变行为表现为非线性直至断裂.复合材料的平均断裂强度和断裂应变分别为23426MPa和0.6%.拉伸破坏损伤表现为:基体开裂,横向纤维束开裂,界面层脱粘,纤维断裂,层间剥离和纤维束断裂.损伤累积后最终导致复合材料交叉编织节点处纤维束逐层断裂和拔出,形成斜口断裂和平口断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号