首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyimide (PI) coatings filled with PTFE and nano‐Si3N4 were prepared by a spraying technique and successive curing. Nano‐Si3N4 particles were modified by grafting 3‐aminopropyltriethoxysilane to improve their dispersion in the as‐prepared coatings. Friction and wear performances and wear mechanisms of the coatings were evaluated. The results show that the incorporations of PTFE and modified nano‐Si3N4 particles greatly improve the friction reduction and wear resistance of PI coating. The friction and wear performance of the composite coating is significantly affected by the filler mass fraction and sliding conditions. PI coating incorporated with 20 wt % PTFE and 5 wt % modified nano‐Si3N4 displays the best tribological properties. Its wear rate is more than one order of magnitude lower and its friction coefficient is over two times smaller than that of the unfilled PI coating. Differences in the friction and wear behaviors of the hybrid coatings as a function of filler or sliding condition are attributed to the filler dispersion, the characteristic of transfer film formed on the counterpart ball and the wear mechanism of the coating under different sliding conditions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40410.  相似文献   

2.
《Ceramics International》2019,45(10):13308-13314
The Si3N4 coating and Si3N4 coating with Si3N4 whiskers as reinforcement (Si3N4w-Si3N4) were prepared by chemical vapor deposition (CVD) on two-dimensional silicon nitride fiber reinforced silicon nitride ceramic matrix composites (2D Si3N4f/Si3N4 composites). The effects of process parameters of as-prepared coating including the preparation temperature and volume fraction of Si3N4w on the microstructure and mechanical properties of the composites were investigated. Compared with Si3N4 coating, Si3N4w-Si3N4 coating shows more significant effect on the strength and toughness of the composites, and both strengthening and toughening mechanism were analyzed.  相似文献   

3.
Crystallized Lu–Si–O–N phases were believed to be the grain‐boundary (GB) phases that might provide Si3N4 with excellent high‐temperature mechanical properties. However, little is known about the intrinsic properties, as well as the synthesis, of the Lu–Si–O–N ceramics. This work reveals the reaction paths of heating Lu2O3, SiO2, and Si3N4 powder mixtures (with the stoichiometry of 4:0.96:1) from room temperature to 1600°C. Thereafter, dense Lu4Si2O7N2 samples are synthesized by in situ reaction/hot‐pressing method, and the mechanical properties at room temperature and elevated temperatures are reported for the first time. The Lu4Si2O7N2 samples show significant high‐temperature mechanical properties, such as the elastic stiffness remains 77% from room temperature to 1500°C; and bending strength keeps 93% from room temperature to 1400°C. The present results shine a light on Lu4Si2O7N2 as a promising target GB phase for the optimization of high‐temperature mechanical properties of Si3N4.  相似文献   

4.
Silicon nitride-monoclinic barium feldspar (Si3N4-m-BAS) composite possesses great dielectric properties, low density, and low thermal expansion coefficient (CTE). Preparing dense Si3N4-m-BAS coating on porous Si3N4 ceramic is an effective strategy to improve its water resistance and ensure its dielectric performances. However, this promising coating has not been reported yet, because the synthesis of m-BAS is difficult, and the densification of Si3N4-BAS composite requires very high temperature. Here, the BaO-Al2O3-SiO2 glass/Si3N4-BAS coating was first fabricated by a manual spray method and pressureless sintering at 1450°C. Combining the influence of Si4+ on the crystal phase composition of BAS and the volume expansion effect of silicon in N2, an effective coating structure design scheme was proposed. By changing the content of silicon powder, the CTE and horizontal shrinkage of the coating during sintering were controlled. Besides, the prepared coatings exhibited low water absorption and high bonding strength. During the thermal shock tests, SiO2 produced by the oxidation of Si3N4 healed the cracks in the coating, thus delaying the degradation of the properties. The coating prepared in this work is expected to be applied to radome in extreme service environments.  相似文献   

5.
We investigated the contact damage and indentation stress–strain behavior of silicon carbide (SiC) coatings and binary coatings consisting of SiC and silicon nitride (Si3N4), synthesized on graphite substrates with porosities of 10 and 13% by a solid–vapor reaction, in order to determine the coatings’ damage resistance. The coating thickness was affected by the porosity of the substrate. The coatings on the substrate with 13% porosity showed a graded interface structure below the top dense layer. The SiC coatings were thicker than the SiC/Si3N4 composite coatings. The SiC coatings made the substrates hard, and SiC-coated substrates exhibited higher stress–strain curves than the substrates alone, but the SiC/Si3N4 composite coatings appeared unaffected. The coating thickness played an important role in limiting the effect of damage. The hardness values of the SiC coatings were higher than those of the substrates and the SiC/Si3N4 coatings. These corresponded well with the indentation stress–strain curves. The values of each coating showed saturated points depending on the applied load. This indicated that the substrate itself influenced the damage resistance of the coatings because of the layered structure of a harder coating with a softer substrate. The coatings enhanced contact damage and transmitted the damage to the substrates at a high load of P = 2000 N. Both coatings showed an extensive subsurface damage, independent of the porosity of the substrate. In cyclic indentation tests, the contact diameters linearly increased with the number of cycles and depended on the porosity of the substrate, showing smaller contact diameters by coating the substrate.  相似文献   

6.
《Ceramics International》2016,42(10):12105-12114
An Al2O3/Si3N4 nanocomposite coating was successfully fabricated on commercial aluminum alloy. Hardness measurements, polarization and electrochemical impedance spectroscopy (EIS) were employed to study the mechanical and corrosion behaviors of the coatings. Field-Emission Scanning Electron Microscopy (FE-SEM) equipped with Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) were utilized to characterize the surface morphology and phase composition of the coatings. Also, coatings abrasive wear properties were evaluated with a modified ASTM G105 standard. FE-SEM image, EDS and XRD analysis revealed the presence of Si3N4 in the coating. Furthermore, the results showed hardness of the coatings to increase from 380±50 HV for the anodized layer to 712±36 HV for the composite coatings that were formed in an electrolyte containing 6 gr/lit Si3N4 nanoparticles. Electrochemical measurements indicated that corrosion resistance of the nanocomposite coating significantly increased compared to the anodized coating. In addition, the effect of Si3N4 nanoparticles into the nanocomposite coatings on abrasive wear mechanism and mass loss rate of the coatings was investigated.  相似文献   

7.
Y–Si–O–N quaternary oxynitrides (Y5Si3O12N, Y4Si2O7N2, YSiO2N, Y2Si3O3N4, and Y3Si5ON9) are recognized as important secondary grain‐boundary phases in silicon nitride and believed to have important impacts on the high‐temperature mechanical properties and thermal conductivity of Si3N4 ceramic. In this work, equilibrium crystal structures, theoretical mechanical properties (second‐order elastic constants, polycrystalline bulk modulus, shear modulus, Young's modulus, and Vickers hardness) of the five quaternary phases are calculated using first‐principle total energy calculations. Meanwhile, temperature dependence of thermal conductivities of all five compounds is obtained based on Debye–Clarke model and Slack equation. On the basis of theoretical prediction, we establish the relationship between the componential (cation/anion or cation/cation ratios) and structural characteristics (bonding configurations) and mechanical/thermal properties. Our results are expected to provide helpful guidelines to improve the performances of Y–Si–O–N ceramics, and further guide the optimization of mechanical and thermal properties of Si3N4 by properly tailoring the secondary grain‐boundary phases.  相似文献   

8.
《Ceramics International》2016,42(16):18380-18392
Nanosized silicon nitride (Si3N4) particles reinforced Nickel-tungsten composite coatings were deposited on the surface of C45 steel sheet by pulse electrodeposition. The effect of duty cycle, frequency, current pattern and presence of Si3N4 nanoparticles on microstructure, phases and corrosion resistance and mechanical properties of the coatings were investigated. The Si3N4 phase was incorporated into Ni-W alloy matrix uniformly and the inclusion content of in the coating was analyzed by energy dispersive x-ray spectrometer (EDS). The structure, microhardness and surface roughness of the coatings was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers micro-indenter and atomic force microscopy (AFM). The corrosion protection of steel by the coatings was evaluated by weight loss and electrochemical impedance spectroscopy (EIS). Corrosion rates of the coatings were determined using the Tafel polarization test. The results indicated that the duty cycle of 60%, pulse frequency of 1000 Hz, average current density of 5 A/dm−2, and Si3N4 nanoparticles concentration of 30 g/L were the optimal plating conditions. The amount of Si3N4 particles incorporated into the coating that were produced under the optimum plating conditions was 2.1 wt%, and the microhardness was 1031 Hv as well as the crystallite size of this coating was 27 nm.  相似文献   

9.
A dense SiC nanowires-toughened α-Si3N4 coating was prepared using a two-step technique for protecting porous Si3N4 ceramic against mechanical damage, and effect of SiC nanowires content on microstructures and properties of the coating were investigated. XRD, SEM and TEM analysis results revealed that as-prepared coatings consisted of α-Si3N4, O'-Sialon, SiC nanowires and Y–Al–Si–O–N glass phase. Furthermore, Vickers hardness of the coated porous Si3N4 ceramics increased gradually with the increasing SiC nanowires content from 0 to 10 wt%, which is attributed to the gradual improvement in intrinsic elastic modulus (E), hardness (H) and H3/E2 of the coatings. But, when the SiC nanowires content was 15 wt%, the thickness of the coating became relatively thinner, so that its protective ability was weakened and Vickers hardness started to decrease accordingly. Meanwhile, the assistance of SiC nanowires enhanced fracture toughness of the coatings obviously because SiC nanowires in the coatings can produce various toughening mechanisms during mechanical damage. When the SiC nanowires content was 10 wt%, its fracture toughness reached the maximum value, which was 6.27 ± 0.05 MPa·m1/2.  相似文献   

10.
《Ceramics International》2022,48(10):13401-13419
New advances in carbon-based fillers (CBFs) as reinforcing agents have gained worldwide attention due to their novel properties and promising applications to obtain advanced composite materials with superior electrical, mechanical and thermal performance. These CBFs (carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, graphene oxide, and graphite) are important for ceramic materials to make them more attractive for modern industry. These materials in the ceramic matrix can enhance various properties, such as mechanical, thermal, and electrical conductivity, as a sensor material for pressure and other environmental changes. This overview introduces the latest developments in the fabrication of Si3N4 ceramics and the effect of CBFs as well SiC and SiCw on structural, mechanical, and thermal properties of Si3N4 ceramics for next-generation electronic power devices. Moreover, we summarized the key aspects such as the fabrication approaches, influence of additive composition and concentration, and sintering parameters on the microstructure and overall performance of Si3N4 ceramics. In particular, design strategies for scientists and engineers concerned about the manufacture of Si3N4 substrate and active regeneration for the first time are proposed and discussed extensively.  相似文献   

11.
Dense multilayer gradient rare earth disilicate (γ-Y2Si2O7 /β-Yb2Si2O7 /β-Lu2Si2O7) coatings were in-situ prepared by melt-infiltration /sintering procedure on porous Si3N4 ceramics for water resistance. Experimental and numerical simulation methods were used to study their thermal shock behavior. As a control, thermal shock behavior of pure γ-Y2Si2O7 coatings were also compared. FEM results showed that the gradient design of modulus in ceramic coating can effectively avoid the mismatch of mechanical properties between coating layer and internal substrate, reducing the transient thermal stress in each layer during thermal shock. All of the pure γ-Y2Si2O7 coatings were failed after thermal shock tests with ΔT ≈ 1200 ℃. However, when sintering temperature of multi-layer disilicate coatings were higher than 1400 ℃, the water absorption rates after thermal shock were all less than 5%, still showing good waterproof performance. The gradient design of modulus could effectively improve the structural stability of ceramic coatings.  相似文献   

12.
This present work explores initially the feasibility of producing in-situ surface oxidized coating on porous silicon nitride (Si3N4) ceramics. Theoretical prediction identifies the applied conditions of self-sealing strategy and oxidation time required to form dense coating. Experimentally, the porous Si3N4 ceramics with different pore structures were selected to fabricate in-situ oxidized coatings. The phase compositions, microstructures and mechanical properties of the porous Si3N4 ceramics were investigated before and after oxidation. The results show that flat and dense coatings are prevailed in all samples, which consist of amorphous SiO2 and its precipitates besides dominant Si3N4 phase. The strengthened substrate and strengthening effect of coating are the essential mechanisms associated with the improved mechanical properties. Self-sealing method seems to offer an inexpensive and efficient route to prepare coating on porous Si3N4 ceramics.  相似文献   

13.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

14.
Silicon nitride (Si3N4) filled linear low-density polyethylene (LLDPE) composite was prepared. The effects of Si3N4 filler content, dispersion, and LLDPE particle size on the thermal conductivity, and Si3N4 filled content on the mechanical and electrical properties of Si3N4 reinforced LLDPE composites prepared using powder mixing were investigated. The results indicate that there existed a unique dispersion state of Si3N4 particles in LLDPE, shell-kernel structure, in which Si3N4 particles surrounded LLDPE matrix particles. With increasing filler content and LLDPE particles size, thermal conductivity increased, and reached 1.42 W/m K at 30 vol% of filler, seven times as that of unfilled LLDPE. Furthermore, the examinations of Agari model demonstrate that larger size LLDPE particles form thermal conductive networks easily compared with smaller ones. The values predicted by theoretical model underestimate the thermal conductivity of Si3N4/LLDPE composites. In addition, the composites still possessed rather higher electrical resistivity and dielectric properties, but the mechanical properties decreased. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
《Ceramics International》2022,48(14):20126-20133
In this study, high-strength and wave-transmission silicon nitride (Si3N4) composites were successfully developed via selective laser sintering (SLS) with cold isostatic pressing (CIP) after debinding and before final sintering, and the optimal moulding process parameters for the SLS Si3N4 ceramics were determined. The effects of the sintering aids and secondary CIP on the bulk density, porosity, flexural strength, fracture toughness, and wave-transmitting properties of the Si3N4 composites were studied. The results showed that the increased CIP pressure was beneficial to the densification of SLS Si3N4 ceramics and improved their mechanical properties. However, the wave-transmitting performance decreased as the CIP pressure increased. The Si3N4 ceramics prepared by the moulding of sample S11 were more in line with the performance requirements of the radomes. To obtain good comprehensive performance, an additional 3% of interparticle Y2O3 was added to the pre-printed mixed powder of granulated Si3N4 particles and resin and the secondary CIP pressure was adjusted to 280 MPa. After sintering, the bending strength, fracture toughness, and dielectric constant of the Si3N4 ceramics were 651 MPa, 6.0 MPa m1/2, and 3.48 respectively. This study provides an important method for preparing of Si3N4 composite radomes using SLS process.  相似文献   

16.
《Ceramics International》2022,48(1):514-524
To enhance the tribological properties of Si3N4 based ceramics, surface textures of dimples combined with DLC coatings are fabricated on Si3N4/TiC ceramic surface by nanosecond laser and plasma enhanced chemical vapor deposition (PECVD). The dry friction and wear performances are evaluated by unidirectional sliding friction tests using a rotary ball-on-disk tribometer. Results reveal that the friction and wear properties of Si3N4/TiC ceramics are significantly enhanced by DLC coatings or dimpled textures, and the DLC coatings combined with dimpled textures show the best efficiency in reducing friction, adhesion and wear. This improvement can be explained by the synergistic effect of DLC coatings and surface textures, and the synergistic mechanisms are attributed to the formation of lubrication film and secondary lubrication, debris capture of dimpled textures, increased surface hardness and mechanical interlocking effect, and reduced contact area.  相似文献   

17.
Heat dissipation material with programmable anisotropic property is very challenging, yet can realize the controllable thermal diffusion for heating device. In this work, anisotropic Si3N4 ceramics with oriented grains are prepared to adjust and improve the mechanical and thermal properties under the applied stress field by rolling film forming technology. Through the design of the sintering aids in the process of liquid-phase sintering, the orientation degree of the Si3N4 grains is programmable as well as the mechanical property and the thermal property of the Si3N4 ceramics. As a consequence, the obtained Si3N4 ceramics show significant anisotropy in mechanical properties and thermal conductivity. The typical fracture toughness and thermal conductivity along the grain orientation direction are 10.6 MPa⋅m1/2 and 45.45 W/(m⋅K) while they are 4.5 MPa⋅m1/2 and 66.42 W/(m⋅K) in the direction perpendicular to the oriented grain, respectively. This grain orientation method paves the way for the thermal performance design and the production of programmable heat dissipation material.  相似文献   

18.
Hybrid fillers of carboxyl‐terminated liquid butadiene‐acrylonitrile/silicon nitride (CTBN/Si3N4) are performed to regulate the mechanical properties, heat resistance properties, dielectric properties and thermal conductivities of the bisphenol A dicyanate ester (BADCY) resins. With the 10 wt% addition of CTBN/Si3N4 hybrid fillers, the maximum impact, and flexural strength of the CTBN/Si3N4/BADCY nanocomposite is increased to 15.4 kJ/m2 and 144.3 MPa, respectively. And the corresponding thermal conductivity value of the CTBN/Si3N4/BADCY nanocomposite is increased to 0.622 W/mK with 18 wt% addition of CTBN/Si3N4 hybrid fillers. Moreover, with the addition of CTBN/Si3N4 hybrid fillers, the heat resistance properties of the CTBN/Si3N4/BADCY nanocomposites are increased, but the dielectric properties get worse slightly. POLYM. COMPOS., 37:2522–2526, 2016. © 2015 Society of Plastics Engineers  相似文献   

19.
《Ceramics International》2022,48(17):24803-24810
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) have been widely used as structural-functional materials at high temperatures. However, their mechanical and electromagnetic wave (EMW) absorbing properties will deteriorate due to high-temperature oxidation. Therefore, unique sandwich structure, consisting of inner Si3N4 impedance layer, middle porous SiOC loss layer and dense oxidation-resistant Si3N4 layer, was proposed to enhance multiple material properties in oxidation environment. Herein, SiCf/Si3N4–SiOC–Si3N4 composites was fabricated by alternating chemical vapor infiltration (CVI) and polymer infiltration pyrolysis (PIP) methods. For these composites, SiC fiber is used as both reinforcing phase and electromagnetic (EM) absorber. CVI Si3N4 matrix was distributed in inner and outer layer of the SiCf/Si3N4–SiOC–Si3N4 composites. While inner Si3N4 layer between BN interphase and SiOC matrix forms nano-heterogeneous interphase to consume EM energy and enhance mechanical properties of composites, outer dense and oxidation-resistant CVI Si3N4 coating serves to maintain properties. PIP SiOC matrix exhibits porous structure that can effectively deflect cracks and achieve multiple scattering of EMW. SiCf/Si3N4–SiOC–Si3N4 composites with sandwich structure demonstrated excellent EMW absorbing properties and mechanical performance in high-temperature oxidation environments.  相似文献   

20.
《应用陶瓷进展》2013,112(3):148-154
Abstract

This article reports on two classes of novel hard amorphous coatings: (a) Si3N4/MeNx coatings with high (≥50 vol.-%) content of Si3N4 phase; here Me=Zr, Ta, Ti, Mo, W, etc. and x=N/Me is the stoichiometry of MeNx metal nitride phase, and (b) Si–B–C–N coatings with strong covalent bonds. These nanocomposites exhibit high thermal stability against crystallisation and high oxidation resistance, both at temperatures considerably exceeding 1000°C. Hard amorphous coatings were prepared using reactive magnetron sputtering. Properties of sputtered coatings were characterised using the following techniques: X-ray diffraction, electron probe microanalysis, Rutherford backscattering spectrometry, elastic recoil detection, high resolution transmission electron microscopy, selected area electron diffraction, atomic force microscopy, microhardness tester Fischerscope H 100, differential scanning calorimetry and thermogravimetric analysis. It was found that hard amorphous coatings of both new systems exhibit excellent oxidation resistance at high temperatures about 1500 and 1700°C for amorphous Si3N4/MeNx and Si–B–C–N coatings respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号