首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactating Holstein cows (n = 711) on a commercial dairy farm in Wisconsin received a hormonal synchronization protocol to initiate first timed artificial insemination (TAI) on the following postpartum schedule: two injections of 25 mg PGF2alpha at 32 +/- 3 d and 46 +/- 3 d (Presynch); 100 microg GnRH at 60 +/- 3 d; 25 mg PGF2alpha at 67 +/- 3 d; and 100 microg GnRH + TAI at 69 +/- 3 d (Ovsynch). At first TAI, cows were randomly assigned to initiate the first GnRH injection of a hormonal protocol for resynchronization of ovulation (Resynch; 100 microg GnRH, d 0, 25 mg PGF2alpha, d 7, 100 microg GnRH + TAI, d 9) at 19 (D19), 26 (D26), or 33 d (D33) after first TAI to set up a second TAI service for cows failing to conceive to Ovsynch. Overall pregnancy rate per artificial insemination (PR/AI) to Ovsynch assessed 68 d after TAI was 31% and did not differ among treatment groups. For Resynch, PR/AI was assessed 26 d after TAI for D19 and D26 cows and 33 d after TAI for D33 cows. Overall PR/AI to Resynch was 32%. However, the PR/AI for D26 (34%) and D33 (38%) cows to Resynch was greater than for D19 cows (23%). Cows with a CL at the PGF2alpha injection (D19 cows) or at the first GnRH injection (D26 + D33 cows) of Resynch exhibited greater PR/AI to Resynch compared with cows without a CL. Survival analysis (failure time) of cows in the D26 and D33 treatment groups across the first three TAI services did not differ statistically. Although administration of GnRH to pregnant cows 19 d after first TAI service did not appear to induce iatrogenic embryonic loss, initiation of Resynch 19 d after first TAI service resulted in a lower PR/AI compared with initiation of Resynch 26 or 33 d after first TAI service.  相似文献   

2.
Objectives were to determine the effects of GnRH at the initiation of the 5-d timed artificial insemination (AI) program combined with 2 injections of PGF on ovarian responses and pregnancy per AI (P/AI) in dairy heifers, and the role of progesterone concentrations on LH release and ovulation in response to GnRH. In study 1, heifers received a controlled internal drug release (CIDR) insert containing 1.38 g of progesterone on d 0, an injection of 25 mg of PGF and CIDR removal on d 5, and an injection of 100 μg GnRH concurrently with AI on d 8. Heifers were assigned to receive no additional treatment (control; n = 559) or an injection of GnRH on d 0 and a second injection of PGF on d 6 (G2P; n = 547). In study 2, all heifers were treated as described for the control in study 1, and were allocated to receive no additional treatment (control; n = 723), an injection of PGF on d 6 (NG2P; n = 703), or an injection of GnRH on d 0 and an injection of PGF on d 6 (G2P; n = 718). In study 3, heifers received a CIDR on d 7 after ovulation and were assigned randomly to a low-progesterone (LP; n = 6) treatment in which 2 injections of 25 mg of PGF each were administered 12 h apart, on d 7 and 7.5 after ovulation, or to a high-progesterone (HP; n = 12) treatment in which no PGF was administered. On d 8, heifers received 100 μg of GnRH and blood was sampled at every 15 min from −30 to 180 min relative to the GnRH for assessment of LH concentrations. Additionally, 94 heifers were assigned to LP or HP and ovulation in response to GnRH was evaluated. In study 1, P/AI was greater for G2P than for the control on d 32 (59.4 vs. 53.5%) and 60 after AI (56.6 vs. 51.3%). In study 2, administration of GnRH on d 0 increased the proportion of heifers with a new corpus luteum on d 5 (control = 21.9 vs. NG2P = 20.1 vs. G2P = 34.4%). Administration of a second PGF increased the proportion of heifers with progesterone <0.5 ng/mL at AI (control = 83.1 vs. NG2P = 93.0 and G2P = 87.2%). Pregnancy per AI was greater for G2P than for control and NG2P on d 32 (control = 52.9 vs. NG2P = 55.0 vs. G2P = 61.7%) and 60 (control = 49.0 vs. NG2P = 51.6 vs. G2P = 59.1%). In study 3, HP attenuated LH release and reduced ovulation (19.0 vs. 48.4%) in response to GnRH compared with LP. Combining GnRH and 2 doses of PGF in the 5-d timed AI protocol improved follicle turnover, luteolysis, and P/AI in heifers. Elevated concentrations of progesterone suppressed LH release and are linked with the low ovulatory response to the initial GnRH treatment of the protocol.  相似文献   

3.
Reproductive performance of dairy heifers was compared for each of 2 synchronization protocols: The first group of 54 heifers was synchronized using intravaginal progesterone inserts (CIDR) plus estradiol cypionate (ECP) on d 0, PGF(2alpha) on d 7, and ECP again on d 8 (CIDR-ECP); a second group of 56 heifers was synchronized using CIDR and ECP on d 0, PGF(2alpha) on d 7, and GnRH on d 9 (CIDR-GnRH). All heifers received timed artificial insemination (TAI) at 48, 56, or 72 h after CIDR removal on d 7. Pregnancy diagnosis was conducted by ultrasonography 32 +/- 1 d post AI to confirm pregnancy and at 60 +/- 1 d post AI to determine embryo survival. Ovaries were monitored by ultrasonography daily from d 0 to 7 and twice daily from d 8 to ovulation to examine emergence of a new wave of follicles, size of the ovulatory follicle, and timing of ovulation on 15 heifers per protocol. New follicular development was detected 3.7 +/- 0.2 d after CIDR insertion. Heifers receiving CIDR-ECP had a shorter interval from CIDR removal to ovulation than heifers receiving CIDR-GnRH (63.8 +/- 3.0 vs. 71.6 +/- 2.3 h, respectively); however, ovulation occurred 39.8 +/- 3.0 h after ECP or 23.6 +/- 2.3 h after GnRH. Diameters of ovulatory follicles did not differ between treatments. Overall pregnancy rate for synchronized heifers was 60.1%, and embryo survival was 98%. Pregnancy rate for heifers synchronized with CIDR-ECP was 63.0% and similar to that in heifers synchronized with CIDR-GnRH (57.1%). Pregnancy rate was affected by time of AI for heifers synchronized using CIDR-ECP but not for those synchronized with CIDR-GnRH. Heifers in the CIDR-ECP group that were inseminated 56 h after CIDR removal had a higher pregnancy rate (81.0%) compared with heifers inseminated 48 (66.7%) or 72 h (50.0%) after CIDR removal. Either ECP or GnRH used in a CIDR-based TAI program in dairy heifers can achieve acceptable reproductive performance.  相似文献   

4.
Holstein heifers (n = 189) were submitted to a 42-d artificial insemination (AI) period in which they underwent AI after once-daily evaluation of rubbed tail chalk. At the onset of the AI period (d 0), heifers were assigned randomly to receive synchronization of ovulation and timed AI (TAI; d 0: 100 mug of GnRH; d 6: 25 mg of PGF(2alpha); d 8: 100 mug of GnRH + TAI) either without (GPG; n = 95), or with inclusion of a CIDR insert (CIDR; n = 94) from d 0 to 6. No CIDR heifers received AI before d 8 compared with 24% of GPG heifers, and pregnancy rate per AI (PR/AI) at 30 d after TAI did not differ between treatments. To synchronize return to estrus for heifers failing to conceive after TAI, heifers (n = 166) receiving TAI to first service were randomly assigned to receive no further treatment (control; n = 85) or receive a new CIDR insert between 14 and 20 d after TAI (Resynch; n = 81). No Resynch heifers received AI during CIDR treatment compared with 35% of control heifers, and the proportion of heifers receiving AI within 72 h after the day of CIDR removal was 78 vs. 50% for Resynch vs. control heifers, respectively. No treatment x inseminator interaction was detected at first or second AI; however, overall PR/AI was modest for heifers throughout the experiment due to poor performance of 2 of the 3 herd inseminators (14, 6, and 58% PR/AI, respectively). Inclusion of CIDR inserts suppressed estrus during the TAI protocol with no reduction in PR/ AI. Resynchronization of estrus using CIDR inserts resulted in tighter synchrony of estrus among nonpregnant heifers compared with untreated controls.  相似文献   

5.
Two experiments evaluated the effects of the first GnRH injection of the 5-d timed artificial insemination (AI) program on ovarian responses and pregnancy per AI (P/AI), and the effect of timing of the final GnRH to induce ovulation relative to AI on P/AI. In experiment 1, 605 Holstein heifers were synchronized for their second insemination and assigned randomly to receive GnRH on study d 0 (n = 298) or to remain as untreated controls (n = 307). Ovaries were scanned on study d 0 and 5. All heifers received a controlled internal drug-release (CIDR) insert containing progesterone on d 0, a single injection of PGF and removal of the CIDR on d 5, and GnRH concurrent with timed AI on d 8. Blood was analyzed for progesterone at AI. Pregnancy was diagnosed on d 32 and 60 after AI. Ovulation on study d 0 was greater for GnRH than control (35.4 vs. 10.6%). Presence of a new corpus luteum (CL) at PGF injection was greater for GnRH than for control (43.1 vs. 20.8%), although the proportion of heifers with a CL at PGF did not differ between treatments and averaged 87.1%. Progesterone on the day of AI was greater for GnRH than control (0.50 ± 0.07 vs. 0.28 ± 0.07 ng/mL). The proportion of heifers at AI with progesterone <0.5 ng/mL was less for GnRH than for control (73.8 vs. 88.2%). The proportion of heifers in estrus at AI did not differ between treatments and averaged 66.8%. Pregnancy per AI was not affected by treatment at d 32 or 60 (GnRH = 52.5 and 49.8% vs. control = 54.1 and 50.0%), and pregnancy loss averaged 6.0%. Responses to GnRH were not influenced by ovarian status on study d 0. In experiment 2, 1,295 heifers were synchronized for their first insemination and assigned randomly to receive a CIDR on d 0, PGF and removal of the CIDR on d 5, and either GnRH 56 h after PGF and AI 16 h later (OVS56, n = 644) or GnRH concurrent with AI 72 h after PGF (COS72; n = 651). Estrus at AI was greater for COS72 than for OVS56 (61.4 vs. 47.5). Treatment did not affect P/AI on d 32 in heifers displaying signs of estrus at AI, but COS72 improved P/AI compared with OVS56 (55.0 vs. 47.6%) in those not in estrus at AI. Similarly, P/AI on d 60 did not differ between treatments for heifers displaying estrus, but CO S72 improved P/AI compared with OVS56 (53.0 vs. 44.7%) in those not in estrus at AI. Administration of GnRH on the first day of the 5-d timed AI program resulted in low ovulation rate and no improvement in P/AI when heifers received a single PGF injection 5 d later. Moreover, extending the proestrus by delaying the final GnRH from 56 to 72 h concurrent with AI benefited fertility of dairy heifers that did not display signs of estrus at insemination following the 5-d timed AI protocol.  相似文献   

6.
Pregnancy per AI (P/AI) following the use of 1 of 2 timed AI (TAI) protocols and 2 different intervals between TAI and resynchronization were compared in heifers that were inseminated with either conventional or sex-sorted semen. Holstein heifers (n = 317; 527 inseminations) were submitted to a 5-d Cosynch protocol with (+) or without (–) GnRH at the time of controlled internal drug release (CIDR) insertion on d 0, CIDR removal and a single PGF treatment on d 5, and TAI plus GnRH on d 8 (72 h later). Visual estrus detection (ED) was conducted on d 6 in the afternoon and d 7 in the morning and heifers observed in estrus were artificially inseminated on d 7 in the afternoon. Heifers were alternately assigned conventional or sex-sorted semen. Pregnancy was diagnosed by ultrasound 27 and 42 d after AI, and heifers diagnosed as nonpregnant were resynchronized, up to 3 times, starting on d 27 or 34 to provide an interbreeding interval of 35 or 42 d. Overall, TAI protocol had no effect on P/AI at 27 or 42 d after artificial insemination or on pregnancy loss, but P/AI following the first service tended to be higher in the –GnRH TAI group (66.3 vs. 56.8%). Pregnancy per AI at 27 d (61.9 vs. 55.5%) tended to differ between conventional and sex-sorted semen. Heifers artificially inseminated based on ED tended to have a greater P/AI (67.6 vs. 58.2%) and had decreased pregnancy loss (0.0 vs. 4.1%) than those submitted to TAI. A greater number of heifers in the –GnRH TAI protocol were artificially inseminated on ED than the +GnRH TAI protocol (21.5 vs. 13.7%). No difference in P/AI was observed between the 35- and 42-d interbreeding intervals; however, more heifers in the 42-d group were artificially inseminated based on ED than in the 35-d group (22.7 vs. 7.8%). A 5-d Cosynch+CIDR TAI protocol without the initial GnRH and with a single PGF at CIDR removal is an acceptable alternative to achieve high P/AI when either conventional or sex-sorted semen is used in Holstein heifers. Breeding heifers based on detected estrus increases labor, but has the potential to increase fertility.  相似文献   

7.
The objective was to compare pregnancy rates in nulliparous Holstein heifers given PGF 24 h before, or concurrent with, removal of an intravaginal progesterone-releasing (CIDR) insert in 3 timed artificial insemination (TAI) protocols. Heifers (from 2 herds) were assigned randomly, over 11 mo, to 1 of 3 modified Ovsynch protocols. On d 0 (without reference to the stage of the estrous cycle), all heifers were given 100 μg of GnRH i.m. and a CIDR insert (containing 1.9 g of progesterone). In the PG-7/P4-8 protocol (n = 99), PGF was given on d 7, and CIDR inserts were removed on d 8. In the PG-7/P4-7 (n = 98) and PG-8/P4-8 (n = 102) protocols, PGF administration and CIDR removal occurred concurrently, on d 7 or 8, respectively. In all 3 protocols, a second GnRH treatment (100 μg) was given 48 h after PGF with TAI 16 to 20 h later. Blood samples were collected (subset of 124 heifers) on d 0, 7, 10 or 11 (i.e., at TAI), and 17. Pregnancy rates (32 d after TAI) for protocols PG-7/P4-8, PG-7/P4-7, and PG-8/P4-8 were 61.8, 55.6, and 54.1%, respectively. Pregnancy rate was higher when synchronization was initiated during diestrus than when initiated at other stages (57.0 versus 34.8%). Although pregnancy rates were not affected by season, there was an interaction between protocol and season; pregnancy rates were significantly lower in summer in heifers subjected to PG-7/P4-7 and PG-8/P4-8, but season did not affect pregnancy rates in heifers subjected to PG-7/P4-8. In summary, giving PGF 24 h before CIDR removal, followed by TAI (PG-7/P4-8 protocol), resulted in consistent pregnancy rates, regardless of season, relative to protocols involving PGF treatment concurrent with CIDR removal.  相似文献   

8.
Objectives were to investigate 2 intervals from induction of ovulation to artificial insemination (AI) and the effect of supplemental progesterone for resynchronization on fertility of lactating dairy cows subjected to a 5-d timed AI program. In experiment 1, 1,227 Holstein cows had their estrous cycles presynchronized with 2 injections of PGF at 46 and 60 d in milk (DIM). The timed AI protocols were initiated with GnRH at 72 DIM, followed by 2 injections of PGF at 77 and 78 DIM and a second injection of GnRH at either 56 (OVS56) or 72 h (COS72) after the first PGF of the timed AI protocols. All cows were time-inseminated at 72 h after the first PGF injection. Pregnancy was diagnosed on d 32 and 60 after AI. In experiment 2, 675 nonpregnant Holstein cows had their estrous cycles resynchronized starting at 34 d after the first AI. Cows received the OVS56 with (RCIDR) or without (RCON) supplemental progesterone, as an intravaginal insert, from the first GnRH to the first PGF. Pregnancy diagnoses were performed on d 32 and 60 after AI. During experiment 2, subsets of cows had their ovaries scanned by ultrasonography at the first GnRH, the first PGF, and second GnRH injections of the protocol. Blood was sampled on the day of AI and 7 d later, and concentrations of progesterone were determined in plasma. Cows were considered to have a synchronized ovulation if they had progesterone <1 and >2.26 ng/mL on the day of AI and 7 d later, respectively, and if no ovulation was detected between the first PGF and second GnRH injections during resynchronization. In experiment 1, the proportion of cows detected in estrus at AI was greater for COS72 than OVS56 (40.6 vs. 32.4%). Pregnancy per AI (P/AI) did not differ between OVS56 (46.4%) and COS72 (45.5%). In experiment 2, cows supplemented with progesterone had greater P/AI compared with unsupplemented cows (51.3 vs. 43.1%). Premature ovulation tended to be greater for RCON than RCIDR cows (7.5 vs. 3.6%), although synchronization of the estrous cycle after timed AI was similar between treatments. Timing of induction of ovulation with GnRH relative to insemination did not affect P/AI of dairy cows enrolled in a 5-d timed AI program. Furthermore, during resynchronization starting on d 34 after the first AI, supplementation with progesterone improved P/AI in cows subjected to the 5-d timed AI protocol.  相似文献   

9.
The objectives were to evaluate the effect of synchronization protocols on follicular development and estradiol 17-β (E2) and progesterone (P4) concentrations in dairy heifers. In experiment 1, 36 heifers were assigned to 1 of 6 synchronization protocols in a 3 × 2 factorial design: presynchronization with GnRH on study d −6 or −9 [study d 0 = initiation of the Cosynch + CIDR (controlled internal drug releasing insert containing P4) protocol] or no presynchronization (control) and one injection of PGF or not on study d 0. In experiment 2, 126 heifers were assigned to 1 of 4 synchronization protocols in a 2 × 2 factorial arrangement: presynchronization or not with GnRH on study d −6 and injection of PGF or not on study d 0. In experiments 1 and 2, all heifers received a modified Cosynch protocol with CIDR for 7 d starting on study d 0. After the PGF of the Cosynch and removal of the CIDR, heifers were detected in estrus and inseminated. Those not inseminated by study d 10 received an injection of GnRH and were timed-inseminated. Ovaries were scanned by ultrasound on d 0, 2, and 5, daily from d 7 to 14, and on d 16. Blood samples collected on d 0, 2, 7, 9, and 16 were analyzed for P4, and the blood sample collected on d 9 was analyzed for E2. Pregnancy was diagnosed at 28 and 40 ± 3 d after artificial insemination. In experiment 1, there was a tendency for the presynchronization protocol to affect the proportion of heifers ovulating in response to the first GnRH injection of the Cosynch + CIDR protocol. In experiment 2, a greater proportion of presynchronized heifers ovulated in response to the first GnRH injection. Although heifers receiving PGF had larger ovulatory follicles on d 7 and before ovulation and shorter intervals to estrus and ovulation, these heifers tended to have decreased concentrations of E2 during proestrus. Presynchronization of dairy heifers with GnRH increased ovulation in response to the first GnRH injection, and treatment of heifers with PGF at initiation of the Cosynch + CIDR protocol increased the size of the ovulatory follicle and reduced the intervals to estrus and ovulation.  相似文献   

10.
Holstein dairy heifers were randomly assigned to 1 of 2 treatments to determine whether a presynchronization strategy using GnRH would improve reproductive performance after synchronization of ovulation and timed artificial insemination (TAI). Heifers (n = 82) in the first treatment (GPG) received a hormonal protocol for synchronization of ovulation and TAI (100 μg of GnRH, d 0; 25 mg of PGF, d 6; 100 μg of GnRH + TAI, d 8); whereas heifers (n = 84) in the second treatment (GGPG) received GPG, but with the addition of a GnRH injection (100 μg) 7 d before initiation of the GPG protocol. The proportion of heifers receiving AI before d 8 was similar for GPG (4.9%) and GGPG (9.5%), and the proportion of heifers diagnosed pregnant 30 d after AI did not differ between treatments (45 vs. 51%, respectively). Treatment did not affect the proportion of heifers ovulating after the second GnRH injection or the proportion in which a corpus luteum regressed after treatment with PGF. In conclusion, presynchronization with GnRH 7 d before initiation of synchronization of ovulation using GnRH and PGF did not affect the proportion of heifers expressing estrus before TAI or improve synchronization response or fertility to the synchronization protocol.  相似文献   

11.
Our objective was to compare the insemination dynamics and time to pregnancy for up to 100 d after the beginning of the artificial insemination period (AIP) for heifers managed with first artificial insemination (AI) service programs that relied primarily on insemination at detected estrus (AIE) after PGF treatments, timed artificial insemination (TAI), or a combination of both. Holstein heifers were randomly assigned to receive first AI service with sex-selected semen after 368 ± 10 d of age with (1) AIE after synchronization of estrus with up to 3 PGF treatments every 14 d starting on the first day of the AIP (PGF+AIE; n = 317). Heifers not AIE up to 9 d after the third PGF received a 5-d Cosynch protocol with progesterone supplementation [GnRH + controlled internal drug release insert (CIDR)–5 d–CIDR removal and PGF–3 d–GnRH and TAI] before TAI. Heifers detected in estrus from CIDR removal and PGF until the day before TAI received AIE with no GnRH treatment; (2) 2 PGF treatments 14 d apart with the second treatment at the beginning of the AIP (PGF+TAI; n = 334). Heifers received AIE for up to 9 d after the second PGF treatment. Heifers not AIE received TAI after the 5-d Cosynch protocol and (3) TAI after the 5-d Cosynch protocol (ALL-TAI; n = 315). Heifers failing to conceive to a previous AI received a subsequent AI with conventional semen at detected estrus or TAI after the 5-d Cosynch protocol. Binomial outcomes were analyzed by logistic regression, whereas time to AI and pregnancy were analyzed with Cox's regression. The hazard of first AI up to 45 d of the AIP was greater for ALL-TAI than for PGF+AIE [hazard ratio (HR) = 1.72; 95% confidence interval (CI) =1.45 to 2.03] and PGF+TAI (HR = 1.51; 95% CI = 1.28 to 1.77), but similar for PGF+AIE and PGF+TAI (HR = 1.14; 95% CI = 0.97 to 1.33). A greater proportion of heifers received AIE in PGF+AIE (98.7%) than in PGF+TAI (78.5%). Overall, first service pregnancy per AI did not differ (PGF+AIE = 42.0%; PGF+TAI = 47.3%, ALL-TAI = 43.8%). Time to pregnancy was reduced for ALL-TAI compared with PGF+AIE (HR = 1.20, 95% CI = 1.02 to 1.42), but was similar to that of PGF+TAI (HR = 1.13, 95% CI = 0.96 to 1.33). Time to pregnancy did not differ for PGF+AIE and PGF+TAI (HR = 1.07, 95% CI = 0.91 to 1.25). Median days to pregnancy were 27, 23, and 21 for heifers in PGF+AIE, PGF+TAI, and ALL-TAI, respectively. We concluded that an ALL-TAI program for first service reduced time to pregnancy, albeit a relatively small reduction, when compared with a program that relied primarily on AIE after induction of estrus with PGF treatments. The program that combined synchronization of estrus and TAI (PGF+TAI) resulted in similar time to pregnancy than the predominant TAI and predominant AIE programs.  相似文献   

12.
The objective was to determine if the 5-d Co-Synch + CIDR (controlled internal drug releasing insert) protocol can be used in dairy heifers for a synchronized timed artificial insemination (TAI) with one injection of PGF for first and second services. In experiment 1, heifers were assigned randomly to receive 1 (n = 295) or 2 (n = 298) injections of PGF in the 5-d Co-Synch + CIDR protocol. Corpus luteum (CL) regression was measured in one replicate (n = 218). No difference in pregnancy per TAI (P/TAI; 46.1 and 48.6%) or CL regression (86.9 and 92.8%) was detected for 1 versus 2 injections of PGF, respectively. In experiment 2, nonpregnant heifers (n = 86) were assigned to a resynchronized 5-d Co-Synch + CIDR with 1 PGF/TAI or insemination at detected estrus. There was no difference in P/TAI (52.2 and 55%) between groups. In experiment 3, nonpregnant heifers (n = 110) were assigned randomly to receive a CIDR (n = 54) or no CIDR insert (n = 56) in the 5-d Co-Synch protocol for resynchronization of TAI. Pregnancy per TAI was lower without the CIDR device (39.3 vs. 51.8%). In a commercial field evaluation, 416 heifers were synchronized for the first and resynchronized TAI with the 5-d Co-Synch + CIDR protocol with 1 injection of PGF. Pregnancy per TAI on d 60 was 58.2 and 47.5% for first and second TAI, respectively; there was a sire effect to the second TAI. In conclusion, the 5-d Co-Synch + CIDR protocol with 1 injection of PGF is an effective reproductive management program for first and second TAI in dairy heifers.  相似文献   

13.
《Journal of dairy science》2023,106(6):4291-4305
The objective of this observational study was to evaluate the association between increased physical activity at first artificial insemination (AI) and subsequent pregnancy per AI (P/AI) in lactating Holstein cows following spontaneous estrus or a timed AI (TAI) protocol. We also wanted to identify factors associated with the intensity of activity increase (PA) captured by automated activity monitors (AAM) and fertility. Two experiments were conducted, in which cows either were inseminated based on the alert of the AAM system (AAM cows) or received TAI following a 7-d Ovsynch protocol (TAI cows) if not inseminated within a farm-specific period after calving. Experiment 1 included 2,698 AI services from AAM cows and 1,042 AI services from TAI cows equipped with the Smarttag Neck (Nedap Livestock Management) from a dairy farm in Slovakia (farm 1). In the second experiment, 6,517 AI services from AAM cows and 1,226 AI services from TAI cows fitted with Heatime (Heatime Pro; SCR Engineers Ltd.) from 8 dairy farms in Germany (farms 2–9) were included. Pregnancy diagnosis was performed on a weekly basis by transrectal ultrasound (farms 1, 3, 7, 8) or by transrectal palpation (farms 2, 4–6, 9). Estrous intensity was represented by the peak value of the change in activity. In experiment 1, PA was categorized into low (x-factor 0–20) and high (x-factor 21–100) PA, and in experiment 2 into low (activity change = 35–89) and high (activity change = 90–100) PA. In TAI cows from both experiments, PA was additionally categorized into cows with no AAM alert. Data were analyzed separately for AAM and TAI cows using multinomial logistic regression models for PA in TAI cows and logistic regression models for PA in AAM cows and P/AI in both groups. In experiment 1, P/AI of AAM cows was greater for AI services performed with conventional frozen semen (57.6%) compared with sexed semen (47.2%), whereas type of semen only tended to be associated with P/AI in TAI cows (54.4% conventional frozen semen vs. 48.9% sexed semen). In experiment 2, P/AI was greater for fresh semen (AAM cows: 44.4% vs. TAI cows: 44.2%) compared with conventional frozen semen (AAM cows: 37.6% vs. TAI cows: 34.6%). In both experiments, pregnancy outcomes were associated with PA. In experiment 1, AAM cows with high PA (55.1%) had greater P/AI than cows with low PA (49.8%). Within TAI cows, cows with no alert (38.8%) had reduced P/AI compared with cows with low (54.2%) or high PA (61.8%). In experiment 2, AAM cows with high PA (45.8%) had greater P/AI compared with cows with low PA (36.4%). Timed AI cows with no alert (27.4%) had decreased P/AI compared with cows with low (41.1%) or high (50.8%) PA. The greatest risk factors for high PA were parity (experiment 1) and season of AI (except for TAI cows from experiment 1). We conclude that high PA at the time of AI is associated with greater odds of pregnancy for both AAM and TAI cows. In both experiments, about 2 thirds of AAM cows (experiment 1: 69.9% and experiment 2: 70.7%) reached high PA, whereas only approximately one-third or less of TAI cows (experiment 1: 37.3% and experiment 2: 23.6%) showed high PA. Although we observed similar results using 2 different AAM systems for the most part, risk factors for high PA might differ between farms and insemination type (i.e., AAM vs. TAI).  相似文献   

14.
The objective of this study was to compare reproductive performance of lactating dairy cows bred by natural service (NS) or timed AI (TAI). One thousand fifty-five cows were blocked by parity and enrolled to receive either NS or TAI. Cows in both groups were presynchronized with 2 injections of PGF given at 42 and 56 d postpartum. Fourteen days after the last PGF injection, cows in the TAI group were enrolled in an Ovsynch protocol (d 0 GnRH; 7 d later, PGF; 56 h after PGF injection, second dose of GnRH; and 16 h after second GnRH cows were TAI). Cows in the TAI group were resynchronized with an intravaginal insert containing progesterone inserted 18 d after TAI and removed 7 d later when GnRH was given. Cows were examined by ultrasonography on d 32 after TAI; nonpregnant cows received PGF and GnRH 56 h later followed by TAI 16 h after the GnRH injection. Nonpregnant cows in TAI group were reinseminated up to 5 times using the same scheme. Cows in the NS group were exposed to bulls 14 d after the second PGF injection, and ultrasonography was performed 42 d after exposure to bulls to determine pregnancy status. Nonpregnant cows in the NS group were reexamined by transrectal palpation combined with ultrasound every 28 d until diagnosed pregnant or 223 d postpartum, whichever occurred first. Cows diagnosed pregnant in TAI or NS were reconfirmed 28 d later to determine pregnancy loss. All bulls underwent an evaluation of breeding soundness and were rested for 14 d after 14 d of cow exposure. Health disorders were evaluated up to 70 d postpartum, and body condition score was evaluated at d 70 postpartum. Blood was collected on d 56 and 65 postpartum and analyzed for progesterone to determine cyclicity. The proportion of pregnant cows in the first 21 d of breeding did not differ between groups. The overall 21-d cycle pregnancy rate (PR), which included a total of 8 and 5 service opportunities for NS and TAI, respectively, was not different between groups (25.7 and 25.0% for NS and TAI, respectively). The daily rate of pregnancy was 15% greater for NS than TAI because cows in NS had a greater PR, which resulted in fewer median days open (111 vs. 116 d). Proportion of pregnant cows at 223 d postpartum was greater in the NS than TAI group (84.2 vs. 74.8%, respectively). Cyclicity did not affect reproductive performance. Cows with body condition score ≥2.75 had greater proportion of pregnant cows in the first 21 d of breeding and daily PR in the first 223 d postpartum Primiparous cows had greater proportion of pregnant cows and daily PR than multiparous cows at 223 d postpartum. In conclusion, the greater proportion of pregnant cows in the NS group was attributed to more opportunities for breeding than in the TAI group.  相似文献   

15.
Our objective was to compare the AI submission rate and pregnancies per artificial insemination (P/AI) at first service of lactating Holstein cows submitted to a Double-Ovsynch protocol and timed artificial insemination (TAI) versus artificial insemination (AI) to a detected estrus after synchronization of estrus at a similar day in milk range. Lactating Holstein cows were randomly assigned to receive their first TAI after a Double-Ovsynch protocol (DO; n = 294) or to receive their first AI after a synchronized estrus (EST; n = 284). Pregnancy status was determined 33 ± 3 d after insemination and was reconfirmed 63 ± 3 d after insemination. Data were analyzed by ANOVA and logistic regression using the MIXED and GLIMMIX procedures of SAS (SAS Institute Inc., Cary, NC). By design, days in milk at first insemination did not differ between treatments (76.9 ± 0.2 vs. 76.7 ± 0.3 for DO vs. EST cows, respectively), but more DO cows were inseminated within 7 d after the end of the voluntary waiting period than EST cows (100.0 vs. 77.5%). Overall, DO cows had more P/AI than EST cows at both 33 d (49.0 vs. 38.6%) and 63 d (44.6 vs. 36.4%) after insemination, but pregnancy loss from 33 to 63 d after insemination did not differ between treatments. Primiparous cows had more P/AI than multiparous cows 33 and 63 d after insemination, but the treatment by parity interaction was not significant. Synchronization rate to the hormonal protocols was 85.3%, which did not differ between treatments; however, synchronized DO cows had more P/AI 33 d after insemination than synchronized EST cows (54.7 vs. 44.5%). In summary, submission of lactating Holstein cows to a Double-Ovsynch protocol and TAI for first insemination increased the percentage of cows inseminated within 7 d after the end of the voluntary waiting period and increased P/AI at 33 and 63 d after first insemination resulting in 64 and 58% more pregnant cows, respectively, than submission of cows for first AI after detection of estrus at a similar day in milk range. We conclude that, because the proportion of synchronized cows did not differ between treatments, DO cows had more P/AI than EST cows because of an intrinsic increase in fertility after submission to a fertility program.  相似文献   

16.
《Journal of dairy science》2021,104(12):12953-12967
Our objective was to evaluate reproductive management programs for submission of Holstein heifers for first insemination with conventional or sexed semen. In experiment 1, nulliparous Holstein heifers (n = 462) were submitted to a 5-d progesterone-releasing intravaginal device (PRID)-Synch protocol [d 0, GnRH + PRID; d 5, PGF − PRID; d 6, PGF; d 8, GnRH + TAI] and were randomly assigned for PRID removal on d 5 or 6 of the protocol followed by timed artificial insemination (TAI) with conventional semen. Delaying PRID removal decreased early expression of estrus before scheduled TAI (0.9 vs. 12.2%), and pregnancies per AI (P/AI) did not differ between treatments. In experiment 2, nulliparous Holstein heifers (n = 736) from 3 commercial farms were randomized within farm to 1 of 3 treatments for first AI with sexed semen: (1) CIDR5 [d −6, GnRH + controlled internal drug release (CIDR); d −1, PGF − CIDR; d 0, PGF; d 2, GnRH + TAI]; (2) CIDR6 (d −6, GnRH + CIDR; d −1, PGF; d 0, PGF − CIDR; d 2, GnRH + TAI); and (3) EDAI (PGF on d 0 followed by once-daily estrous detection and AI). Delaying CIDR removal decreased early expression of estrus before scheduled TAI (0.004 vs. 27.8%); however, CIDR5 heifers tended to have more P/AI at 35 (53 vs. 45 vs. 46%) and 64 (52 vs. 45 vs. 45%) days after AI than CIDR6 and EDAI heifers, respectively. Overall, CIDR5 and CIDR6 heifers had fewer days to first AI and pregnancy than EDAI heifers which resulted in less feed costs than EDAI heifers due to fewer days on feed until pregnancy. Despite greater hormonal treatment costs for CIDR5 heifers, costs per pregnancy were $16.66 less for CIDR5 than for EDAI heifers. In conclusion, delaying PRID removal by 24 h within a 5-d PRID-Synch protocol in experiment 1 suppressed early expression of estrus before TAI, and P/AI for heifers inseminated with conventional semen did not differ between treatments. By contrast, although delaying CIDR removal by 24 h within a 5-CIDR-Synch protocol in experiment 2 suppressed early expression of estrus before TAI, delaying CIDR removal by 24 h tended to decrease P/AI for heifers inseminated with sexed semen. Further, submission of heifers to a 5-d CIDR-Synch protocol for first AI tended to increase P/AI and decrease the cost per pregnancy compared with EDAI heifers.  相似文献   

17.
The objective was to compare the costs of natural service (NS) and timed artificial insemination (TAI) as breeding programs for dairy cows. Both programs were directly compared in a field study from November 2006 to March 2008. Reproductive results in that study were similar and served as inputs for this study. A herd budget accounting for all costs and revenues was created. Net cost during the field study for the NS program was $100.49/cow per year and for the TAI program was $67.80/cow per year, unadjusted for differences in voluntary waiting period for first insemination (VWP) and pregnancy rates (PR). After inclusion of the differences in VWP and PR, the economic advantage of the TAI program was $9.73/cow per year. Costs per day a cow was eligible for insemination were estimated at $1.45 for the NS program and $1.06 for the TAI program. Sensitivity analysis revealed that if the marginal feed cost increased to $5/hundredweight (cwt; 1 cwt = 45.36 kg), the advantage of TAI increased to $48.32/cow per year. In addition, higher milk prices and greater genetic progress increased the advantage of TAI. When semen price increased from $6 to $22, the NS program had an economic advantage of $33.29/cow per year. If each NS bull was replaced by an additional cow, the advantage of the TAI program was $60.81/cow per year. Setting the PR for both programs at 18% and the VWP at 80 d resulted in an advantage of $37.87/cow per year for the TAI program. In conclusion, any advantage of TAI depended greatly on cost to feed bulls, semen price, and genetic merit of semen.  相似文献   

18.
The objective was to determine if reducing the interval from presynchronization to the first GnRH injection (G1) of a timed artificial insemination (AI) protocol improves pregnancy per AI. One thousand two hundred fourteen Holstein cows, at 37 ± 3 d in milk (DIM), were stratified by parity, DIM, and milk yield in the first month postpartum and randomly assigned to control (n = 412), 2 injections of PGF2α at 37 ± 3 and 51 ± 3 DIM, then enrolled in a timed AI protocol 14 d later; PShort (n = 410), 2 injections of PGF2α at 40 ± 3 and 54 ± 3 DIM, then enrolled in a timed AI protocol 11 d later; or PShortG (n = 392), same as PShort, but with an injection of GnRH 7 d before G1. All cows received the same timed AI protocol (d 65, G1; d 72, PGF2α; d 73, 1 mg of estradiol cypionate; d 75, AI). A subset of 1,000 cows had their ovaries examined by ultrasonography at G1 and 7 d later when PGF2α of the timed AI was given to determine presence of corpus luteum (CL) and ovulation to G1. Pregnancy was diagnosed on d 38 after timed AI, and pregnant cows were reevaluated for pregnancy 4 wk later. Altering the interval between presynchronization and G1 did not affect the proportion of cows with a CL at G1, but GnRH 7 d before G1 increased the proportion of cows with a CL. Ovulation to G1 was greater for 11 compared with the 14 d interval, but GnRH did not improve ovulation. The increased ovulation to G1 when the interval was reduced from 14 to 11 d was observed only in cows with a CL at G1, but treatment did not affect ovulation in cows without a CL at G1. Treatment affected the pregnancy per AI on d 38 and 66 after insemination, and they were greater for the 11 compared with 14-d interval, but addition of GnRH did not improve pregnancy per AI. Cows ovulating to G1 had greater pregnancy per AI regardless of whether or not they had a CL at G1. Reducing the interval from presynchronization to initiation of the timed AI protocol from 14 to 11 d increased ovulation to G1 and pregnancy per AI in lactating dairy cows.  相似文献   

19.
The objectives were to evaluate the effect of supplemental progesterone during a timed artificial insemination (TAI) protocol on pregnancy per insemination and pregnancy loss. Lactating dairy cows from 2 dairy herds were presynchronized with 2 injections of PGF 14 d apart, and cows observed in estrus following the second PGF injection were inseminated (n = 1,301). Cows not inseminated by 11 d after the end of the presynchronization were submitted to the TAI protocol (d 0 GnRH, d 7 PGF, d 8 estradiol cypionate, and d 10 TAI). On the day of the GnRH of the TAI protocol (study d 0), cows were assigned randomly to receive no exogenous progesterone (control = 432), one controlled internal drug-release (CIDR) insert (CIDR1 = 440), or 2 CIDR inserts (CIDR2 = 440) containing 1.38 g of progesterone each from study d 0 to 7. Blood was sampled on study d 0 before insertion of CIDR for determination of progesterone concentration in plasma, and cows with concentration <1.0 ng/mL were classified as low progesterone (LP) and those with concentration ≥1.0 ng/mL were classified as high progesterone (HP). From a subgroup of 240 cows, blood was sampled on study d 3, 7, 17 and 24 and ovaries were examined by ultrasonography on study d 0 and 7. Pregnancy was diagnosed at 38 ± 3 and 66 ± 3 d after AI. Data were analyzed including only cows randomly assigned to treatments and excluding cows that were inseminated after the second PGF injection. The proportion of cows classified as HP at the beginning of the TAI protocol was similar among treatments, but differed between herds. Concentrations of progesterone in plasma during the TAI protocol increased linearly with number of CIDR used, and the increment was 0.9 ng/mL per CIDR. The proportion of cows with plasma progesterone ≥1.0 ng/mL on study d 17 was not affected by treatment, but a greater proportion of control than CIDR-treated cows had asynchronous estrous cycles following the TAI protocol. Treatment with CIDR inserts, however, did not affect pregnancy at 38 ± 3 and 66 ± 3 d after AI or pregnancy loss.  相似文献   

20.
Two experiments were conducted to determine the effect of estradiol cypionate (ECP), when incorporated into a conventional GnRH-PGF2α-GnRH timed artificial insemination protocol (Ovsynch), on systemic estradiol (E2), time and incidence of ovulation, luteal development, and conception rate in Holstein cows. Our objective was to determine if administration of 0.25 mg of ECP at the time of the second GnRH injection would effectively synchronize ovulation and increase conception rate. In Experiment 1, lactating Holstein cows (n = 23; 58.7 ± 1.2 d in milk) were synchronized with PGF2α (at d −10). Ten days later, Ovsynch was initiated with the administration of 100 μg of GnRH (d 0) followed by PGF2α on d 7. On d 9, cows were assigned randomly to be treated with either GnRH + 0.25 mg of ECP (OVS-ECP; n = 11) or GnRH and 1 mL of cottonseed oil (OVS-C; n = 12). Ovarian activity was monitored by ultrasonography on d 0, 7, and 9. To determine the time of ovulation, ultrasound examinations were conducted at 12 and 20 h posttreatment and then at least every 3 h until either 36 h posttreatment or ovulation was observed. Blood samples were collected on d 0, 7, 9, and 16 for progesterone analysis. Blood samples also were collected at the time of treatment (d 9, 0 h) and at 6, 12, 20, and 28 h for E2 analysis. Incidence of ovulation did not differ between treatments. Mean ovulation time relative to the second GnRH administration was similar between treatments. Serum progesterone concentration did not differ between treatments at any time. Serum E2 concentration was not different at the time of treatment (0 h); however, mean E2 concentration was greater for the OVS-ECP group at 6 and 12 h after treatment compared with OVS-C. In Experiment 2, lactating dairy cows (n = 333) in 3 commercial herds were randomly assigned to OVS-ECP (n = 169) or OVS-C (n = 164). Cows were inseminated 22 to 24 h posttreatment. Conception rates did not differ between treatments. Estradiol cypionate treatment was successful in increasing serum E2 when administered at the time of the second dose of GnRH in the Ovsynch protocol. Conception rates, however, were not affected by treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号