首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with an application of the boundary element method to the analysis of nonlinear sloshing problems, namely nonlinear oscillations of a liquid in a container subjected to forced oscillations. First, the problem is formulated mathematically as a nonlinear initial-boundary value problem by the use of a governing differential equation and boundary conditions, assuming the fluid to be inviscid and incompressible and the flow to be irrotational. Next, the governing equation (Laplace equation) and boundary conditions, except the dynamic boundary condition on the free surface, are transformed into an integral equation by employing the Galerkin method. Two dynamic boundary condition is reduced to a weighted residual equation by employing the Galerkin method. Two equations thus obtained are discretized by the use of the finite element method spacewise and the finite difference method timewise. Collocation method is employed for the discretization of the integral equation. Due to the nonlinearity of the problem, the incremental method is used for the numerical analysis. Numerical results obtained by the present boundary element method are compared with those obtained by the conventional finite element method and also with existing analytical solutions of the nonlinear theory. Good agreements are obtained, and this indicates the availability of the boundary element method as a numerical technique for nonlinear free surface fluid problems.  相似文献   

2.
In this paper, a method to account for the point‐wise discretization error in the solution for boundary element method is developed. Interval methods are used to enclose the boundary integral equation and a sharp parametric solver for the interval linear system of equations is presented. The developed method does not assume any special properties besides the Laplace equation being a linear elliptic partial differential equation whose Green's function for an isotropic media is known. Numerical results are presented showing the guarantee of the bounds on the solution as well as the convergence of the discretization error. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a boundary element formulation for the analysis of linear elastic fracture mechanics problems involving anisotropic bimaterials. The most important feature associated with the present formulation is that it is a single domain method, and yet it is accurate, efficient and versatile. In this formulation, the displacement integral equation is collocated on the uncracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. The complete Green's functions for anisotropic bimaterials are also derived and implemented into the boundary integral formulation so that discretization along the interface can be avoided except for the interfacial crack part. A special crack-tip element is introduced to capture exactly the crack-tip behavior.Numerical examples are presented for the calculations of stress intensity factors for a straight crack with various locations in infinite bimaterials. It is found that very accurate results can be obtained by the proposed method even with relatively coarse discretization. Numerical results also show that material anisotropy can greatly affect the stress intensity factor.  相似文献   

4.
Based on the Mixture theory and the principles of continuum mechanics, a dynamic three-phase model for partially saturated poroelasticity is established as well as the corresponding governing equations in Laplace domain. The three-dimensional fundamental solutions are deduced following Hörmander's method. Based on the weighted residual method, the boundary integral equations are established. The boundary element formulation in time domain for partially saturated media is obtained after regularization by partial integration, spatial discretization, and the time discretization with the Convolution Quadrature Method. The proposed formulation is validated with the semi-analytical one-dimensional solution of a column. Studies with respect to the spatial and temporal discretization show its sensitivity on a fine enough mesh. A half-space example allows to study the wave fronts. Finally, the proposed formulation is used to compute the vibration isolation of an open trench.  相似文献   

5.
The mathematical formulation of the problem of transient wave interaction with a crack in a homogeneous, isotropic, linearly elastic solid has been reduced to the solution of an integral equation over the insonified crack face. The integral equation relates the unknown crack-opening displacement, which depends on time and position, to the incident wave field. The integral equation has been solved numerically by a time-stepping method in conjunction with a boundary element discretization of the crack surface. For normal incidence of a longitudinal step-stress wave on a penny-shaped crack, results as functions of time have been obtained for the crack-opening displacement, the elastodynamic Mode-I stress intensity factor and the scattered far-field.  相似文献   

6.
This paper investigates the T-stress in the branch crack problem. The problem is modeled by a continuous distribution of dislocation along branches, and the relevant singular integral equation is obtained accordingly. After discretization of the singular integral equation, the balance for the number of equations and unknowns is well designed. After the singular integral equation is solved, the equation for evaluating the T-stress is derived. The merit of present study is to provide necessary equation for evaluating T-stress, rather than to provide the integral equation. Many computed results for T-stress under different conditions for branch crack are presented. It is found from the computed results that the interaction for T-stress among branches is complicated.  相似文献   

7.
A sufficient condition for the existence of element singular integral of the traction boundary integral equation for elastic problems requires that the tangential derivatives of the boundary displacements are Hölder continuous at collocation points. This condition is violated if a collocation point is at the junction between two standard conforming boundary elements even if the field variables themselves are Hölder continuous there. Various methods are proposed to overcome this difficulty. Some of them are rather complicated and others are too different from the conventional boundary element method. A dynamic element discretization method to overcome this difficulty is proposed in this work. This method is novel and very simple: the form of the standard traction boundary integral equation remains the same; the standard conforming isoparametric elements are still used and all collocation points are located in the interior of elements where the continuity requirements are satisfied. For boundary elements with boundary points where the field variables themselves are singular, such as crack tips, corners and other boundary points where the stress tensors are not unique, a general procedure to construct special elements has been developed in this paper. Highly accurate numerical results for various typical examples have been obtained.  相似文献   

8.
In this paper an integral equation formulation is proposed for the analysis of orthotropic potential problems. The two primary integral equations of the method are derived from the original governing differential equation firstly by rewriting it in a slightly different form and then applying the direct boundary element method formulation. The solution procedure is based on the use of the fundamental solutions for the isotropic potential case and special attention is given to the differentiation of a singular integral which yields an additional term as well as to the evaluation of the resulting Cauchy principal value integral. A simple discretization for the boundary and its interior domain is adopted in order to express the primary integral equations of the method in matrix form. Three examples are presented, the results of which illustrate the satisfactory accuracy of the method. The main feature of the proposed formulation is its generality, which makes possible its direct extension to solve such as heat conduction or subsurface flow in anisotropic media and, foremost, to orthotropic and anisotropic elasticity or elastoplasticity.  相似文献   

9.
This paper is concerned with discretization and numerical solution of a regularized version of the hypersingular boundary integral equation (HBIE) for the two-dimensional Laplace equation. This HBIE contains the primary unknown, as well as its gradient, on the boundary of a body. Traditionally, this equation has been solved by combining the boundary element method (BEM) together with tangential differentiation of the interpolated primary variable on the boundary. The present paper avoids this tangential differentiation. Instead, a “pure” BEM method is proposed for solving this class of problems. Dirichlet, Neumann and mixed problems are addressed in this paper, and some numerical examples are included in it.  相似文献   

10.
This paper presents a new set of boundary integral equations for three dimensional acoustic shape sensitivity analysis based on the direct differentiation method. A linear combination of the derived equations is used to avoid the fictitious eigenfrequency problem associated with the conventional boundary integral equation method when solving exterior acoustic problems. The strongly singular and hypersingular boundary integrals contained in the equations are evaluated as the Cauchy principal values and Hadamard finite parts for constant element discretization without using any regularization technique in this study. The present boundary integral equations are more efficient to use than the usual ones based on any other singularity subtraction technique and can be applied to the fast multipole boundary element method more readily and efficiently. The effectiveness and accuracy of the present equations are demonstrated through some numerical examples.  相似文献   

11.
为了提高舰船的隐蔽性,需要对舰船进行消磁,而磁场预测是眦船消磁的核心步骤.对于任意舰船,奉文构造了包含它的一个封闭曲面,并利用位势理论,建立该曲面上等效磁荷面分布与磁场传感器测量值之间应该满足的积分方程.离散化求解后,利用该等效磁荷面分布对舰船产生的磁场进行颅测.此方法既不必考虑被研究舰船的几何结构,又可以在任意方向上进行预测,冈此适用范围广.数值模拟表明了该方法预测的精确性和应用价值.  相似文献   

12.
Chang-New Chen   《Composite Structures》2004,64(3-4):339-348
The dynamic response of shear-deformable axisymmetric orthotropic circular plate structures is solved by using the DQEM to the spacial discretization and EDQ to the temporal discretization. In the DQEM discretization, DQ is used to define the discrete element model. Discrete dynamic equilibrium equations defined at interior nodes in all elements, transition conditions defined on the inter-element boundary of two adjacent elements and boundary conditions at the structural boundary form a dynamic equation system at a specified time stage. The dynamic equilibrium equation system is solved by the direct time integration schemes of time-element by time-element method and stages by stages method which are developed by using EDQ and DQ. Numerical results obtained by the developed numerical algorithms are presented. They demonstrate the developed numerical solution procedure.  相似文献   

13.
In this paper the diffusion equation is solved in two-dimensional geometry by the dual reciprocity boundary element method (DRBEM). It is structured by fully implicit discretization over time and by weighting with the fundamental solution of the Laplace equation. The resulting domain integral of the diffusive term is transformed into two boundary integrals by using Green's second identity, and the domain integral of the transience term is converted into a finite series of boundary integrals by using dual reciprocity interpolation based on scaled augmented thin plate spline global approximation functions. Straight line geometry and constant field shape functions for boundary discretization are employed. The described procedure results in systems of equations with fully populated unsymmetric matrices. In the case of solving large problems, the solution of these systems by direct methods may be very time consuming. The present study investigates the possibility of using iterative methods for solving these systems of equations. It was demonstrated that Krylov-type methods like CGS and GMRES with simple Jacobi preconditioning appeared to be efficient and robust with respect to the problem size and time step magnitude. This paper can be considered as a logical starting point for research of iterative solutions to DRBEM systems of equations. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the dynamic pressure and flow developed in a two-dimensional, viscous fluid film constrained between flexible surfaces are analyzed. The problem formulation assumes that the response of the flexible surface is governed by linear equations of motion, and the fluid motion is governed by linearized momentum equations including the unsteady inertia. Three states of the model are developed to describe the coupled fluid-structural response problem. The fluid dynamic pressure is derived in the frequency domain as a function of the fluid impedances and the surface transverse vibrations. The perturbed, coupled problem is described by an integral equation (in state vector form) that governs the coupled responses of the flexible surfaces. The integral equation is solved by a discretization method. The analysis is applied to a rigid slider bearing with a flexible, translating plate surface under the excitation of a harmonic point load. The accuracy of the discretization method is evaluated, and numerical results for the dynamic pressure and the plate response are presented.  相似文献   

15.
Abstract— The subject of hypersingular boundary integral equations is a rapidly developing topic due to the advantages which this kind of formulation offers compared to the standard boundary integral method. The hypersingular formulation is particularly well suited for fracture mechanics problems, where there are important gradients of the stress field and singularities. This formulation for time domain antiplane problems has been recently addressed by the authors and in the present paper, the formulation for time domain plane problems is presented and applied for the first time. A mixed Boundary Element approach based on the standard integral equation and the hypersingular integral equation is developed. The mixed formulation allows for a very simple discretization of the problem, where no subregion is needed. Conforming quadratic elements are used for the crack and the external boundaries. The hypersingular integral equation is used for collocation points within the crack elements, while the standard integral representation is used for the external boundaries. Several examples with different crack geometries are studied to illustrate the possibilities of the method. The Stress Intensity Factor (S.I.F.) is very accurately computed from the crack tip opening displacements along the crack tip element. The results show that the proposed approach for S.I.F. evaluation is simple and produces accurate solutions.  相似文献   

16.
A new Green’s function is derived to determine the mode-I stress intensity factor for axisymmetric solids containing external circular crack. The formulated boundary integral equation is applied to a finite cylindrical bar with an external crack, and the obtained solution is compared with existing published results, indicating good agreement. The proposed method compared with the finite element method or the conventional application of the boundary element method provides the following main advantages: (a) it does not require discretization of the crack surface, (b) it does not require multi-region modeling and (c) it reduces the 3-D discretization of the solid to 1-D resulting in substantially reduced effort.  相似文献   

17.
Existing convergence estimates for numerical scattering methods based on boundary integral equations are asymptotic in the limit of vanishing discretization length, and break down as the electrical size of the problem grows. In order to analyse the efficiency and accuracy of numerical methods for the large scattering problems of interest in computational electromagnetics, we study the spectrum of the electric field integral equation (EFIE) for an infinite, conducting strip for both the TM (weakly singular kernel) and TE polarizations (hypersingular kernel). Due to the self‐coupling of surface wave modes, the condition number of the discretized integral equation increases as the square root of the electrical size of the strip for both polarizations. From the spectrum of the EFIE, the solution error introduced by discretization of the integral equation can also be estimated. Away from the edge singularities of the solution, the error is second order in the discretization length for low‐order bases with exact integration of matrix elements, and is first order if an approximate quadrature rule is employed. Comparison with numerical results demonstrates the validity of these condition number and solution error estimates. The spectral theory offers insights into the behaviour of numerical methods commonly observed in computational electromagnetics. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
For physical phenomena governed by the Biot model of porous-elasticity, a reciprocal relation, similar to the Betti's recoprocal theorem in elasticity, is constructed in Laplace transformed space. Integrating the reciprocal relation enables one to formulate boundary integral equations. The fundamental kernels for the integral equations are solved in closed forms for the case of isotropic material. Numerical implementation of two-dimensional problems includes finite element ideas of discretization and polynomial interpolation, and numerical inversion of a Laplace transform. Practical applications of the method are found in consolidation problems in soils which contain compressible as well as incompressible pore fluids. Also, as a numerical experiment, consolidation of partially saturated soil is simulated and interesting phenomena are observed. The currently developed boundary integral equation method (BIEM) for porous-elasticity may be viewed as an efficient and accurate alternative of existing finite element and finite difference methods. For linear consolidation problems, application of BIEM is always preferred to the other numerical methods whenever possible.  相似文献   

19.
Three stages are involved in the formulation of a typical direct boundary element method: derivation of an integral representation; taking a Limit To the Boundary (LTB) so as to obtain an integral equation; and discretization. We examine the second and third stages, focussing on strategies that are intended to permit the relaxation of standard smoothness assumptions. Two such strategies are indicated. The first is the introduction of various apparent or ‘pseudo-LTBs’. The second is ‘relaxed regularization’, in which a regularized integral equation, derived rigorously under certain smoothness assumptions, is used when less smoothness is available. Both strategies are shown to be based on inconsistent reasoning. Nevertheless, reasons are offered for having some confidence in numerical results obtained with certain strategies. Our work is done in two physical contexts, namely two-dimensional potential theory (using functions of a complex variable) and three-dimensional elastostatics. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
An improved numerical method, based on a variational approach with isoparametric finite elements, is presented for the solution of the boundary integral equation formulation of three-dimensional fields. The technique provides higher-order approximation of the unknown function over a bounding surface described by two-parameter, non-planar elements. The integral equation is discretized through the Rayleigh–Ritz procedure. Convergence to the solution for operators having a positive-definite component is guaranteed. Kernel singularities are treated by removing them from the relevant integrals and dealing with them analytically. A successive element iterative process, which produces the solution of the large dense matrix of the complete structure, is described. The discretization and equation solution take place one element at a time resulting in storage and computational savings. Results obtained for classical test models, involving scalar electrostatic potential and vector elastostatic displacement fields, demonstrate the technique for the solution of the Fredholm integral equation of the first kind. Solution of the Fredholm equation of the second kind is to be reported subsequently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号