共查询到18条相似文献,搜索用时 46 毫秒
1.
采用混酸(H2SO4/HNO3=3/1(V/V))处理多壁碳纳米管(MWNTs)制备了羧基化碳管(Carboxylated MWNTs),并与哌嗪(PIP)反应,制备了胺化的多壁纳米碳管(Amine functionalized MWNTs)。以聚砜(PSf)超滤膜为基膜,以均苯三甲酰氯(TMC)为油相单体和胺化的多壁纳米碳管与哌嗪(PIP)为水相单体,采用界面聚合法制得多壁碳纳米管改性聚哌嗪酰胺复合纳滤膜。采用傅里叶红外光谱(FT-IR)、拉曼光谱(RAM)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)和静态接触角表征了改性前后碳纳米管和复合膜的结构,结果表明哌嗪成功氨化改性了碳纳米管,基膜表面复合了一层聚哌嗪酰胺膜。重点考察了碳管在水相中添加量、TMC浓度、聚合时间对复合膜性能的影响,结果显示,在有机相单体浓度为1 g?L?1,水相单体浓度为2 g?L?1,水相中多壁碳纳米管的浓度为0.1 g?L?1,反应时间为45 s,复合膜的纯水通量为85.6 L?m?2?h?1,Na2SO4的截留率达到98%,对不同盐溶液的截留效果分别为:Na2SO4MgSO4MgCl2NaCl。水相中碳纳米管的加入,能有效改善膜的分离性能。 相似文献
2.
3.
4.
聚哌嗪酰胺复合纳滤膜制备及其性能表征 总被引:13,自引:4,他引:13
以聚砜超滤膜为基膜,采用界面聚合方法制备了聚哌嗪酰胺复合纳滤膜,并对其膜性能进行了表征。实验重点考察了基膜性质、聚合单体浓度、聚合反应时间、表面活性剂浓度、酸受体添加量等因素对纳滤膜性能的影响,确定了纳滤膜制备过程的界面聚合优化条件,即:水相单体(哌嗪)浓度0.08~0.12molL-1;有机相单体(间苯二甲酰氯和均苯三甲酰氯混合物)浓度0.08~0.1molL-1;聚合反应时间3~5min。在0.4MPa、25℃条件下,实验测得复合纳滤膜的水通量为4.12Lm-2h-1bar-1,膜对浓度为0.01molL-1的NaCl的截留率为30%~40%,对浓度为0.005molL-1的Na2SO4的截留率为80%~90%;对分子量不低于300gmol-1的有机物的截留率高于95%。该膜的分离性能接近于商业纳滤膜,其分离机理主要表现为“筛分机理以及膜与电解质之间的荷电作用。 相似文献
5.
主要研究以聚乙烯亚胺(PEI)和均苯三甲酰氯(TMC)为反应单体,采用界面聚合法来制备荷正电纳滤膜.通过均匀实验设计,得出的优化条件为: PEI浓度为1.75%,十二烷基硫酸钠(SDS)浓度为0.1%,酸接受剂(Na2CO3:NaOH=2:1)浓度为0.3%(均为质量浓度),界面聚合反应时间(IPT)为2 min,膜对一价盐的截留率均在30%左右,对二价盐的截留率接近70%,对低分子有机染料的截留率达90%以上. 相似文献
7.
为改善聚偏氟乙烯(PVDF)复合纳滤膜性能,以掺入单体哌嗪(PIP)的铸膜液制备基膜,通过原位界面聚合快速制备复合纳滤膜,简化了制备程序。ATR-FTIR分析结果表明,基膜上成功生成聚酰胺(PA)层,SEM观察到PA层表面具有典型结节结构。得到的复合纳滤膜对Na2SO4截留率为95.59%,渗透通量为12.37 L/(m2·h·bar),远高于传统界面聚合制备的PVDF复合纳滤膜。72 h的持续测试结果表明该复合纳滤膜具有良好的长期稳定性。 相似文献
8.
9.
10.
王丁;钱德猛;曹明雪;李郑玲;王晓燕;李玉想;崔国旗;周阿洋 《安徽化工》2025,(1):63-66
花生壳作为一种广泛存在的农业废弃物,目前以焚烧作为主要处理形式。近年来耐溶剂复合纳滤膜因其能够在有机溶剂中不易溶解,常被用于催化剂中的氮氮二甲基甲酰胺溶液的回收,寻找合适的耐溶剂膜材料也成为研究热点。利用花生壳单元结构中富含多酚的特点,采用处理后的花生壳液化产物作为水相单体与均苯三甲酰氯(TMC)通过界面聚合反应,制备了一种有机溶剂纳滤膜。制备时为了加强膜的交联程度,在界面聚合过程中加入乙二胺,并考查了乙二胺用量对膜性能的影响,制备的膜NF-1EDA在分离氮氮二甲基甲酰胺(DMF)的孟加拉红溶液中表现出稳定的分离性能,截留率达到98%。本研究不仅为花生壳的高效回收提供了一条良好的途径,而且为聚芳酯耐溶剂膜的制备提供了一种新的材料。 相似文献
11.
Pimchaya Luangaramvej Peeranuch Poungsripong Stephan Thierry Dubas 《Polymer International》2022,71(1):139-145
Polyelectrolyte complex (PEC) membranes prepared from poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were modified by crossflow polymerization of aniline (ANI). The PEC membranes were used as separators in a two-compartment setup where ANI monomer and ammonium persulfate (APS) oxidant diffused through the membranes to form polyaniline (PANI). APS and ANI having different distributions throughout the membranes, the reaction led to the asymmetric polymerization of PANI on one face of each PEC membrane thus producing Janus membranes. Due to the excess PANI content, the membrane displayed distinct asymmetric electrical conductivities on each face. Interestingly, very different ANI polymerizations were obtained when nonstoichiometric PEC membranes having different molar ratio of cationic and anionic polyelectrolytes (P+:P? represents PDADMAC:PSS) were used and transport of APS was fastest through the 2:1 PEC when compared to the 1:2 PEC. In all experiments, the polymerization was most intense on the ANI side of the membranes. Also, the influence of NaCl both during PEC fabrication and during polymerization was studied and found to have some effect on the solute permeability. Results showed that a higher content of PANI was formed on PEC membranes having excess P+ and with no NaCl added during PEC fabrication. Although X-ray diffraction confirmed the presence of PANI on both sides of each membrane, scanning electron microscopy images demonstrated that both sides of each membrane had different PANI content deposited. Electrical conductivity measurements using a four-point probe setup also showed that the PEC–PANI exhibits asymmetric electrical property on different sides. © 2021 Society of Industrial Chemistry. 相似文献
12.
Xiuzhen Wei Xufeng Xu Yi Chen Qian Zhang Lu Liu Ruiyuan Yang Jinyuan Chen Bosheng Lv 《Frontiers of Chemical Science and Engineering》2021,15(2):351-362
Polyamide(PA)hollow fibre composite nanofiltration(NF)membranes with a coffee-ring structure and beneficial properties were prepared by adding graphene oxide(GO)into the interfacial polymerization process.The presentation of the coffee-ring structure was attributed to the heterogeneous,finely dispersed multiphase reaction system and the“coffee-stain”effect of the GO solution.When the piperazine concentration was 0.4 wt-%,the trimesoyl chloride concentration was 0.3 wt-%,and the GO concentration was 0.025 wt-%,the prepared NF membranes showed the best separation properties.The permeate flux was 76 L·m?2·h?1,and the rejection rate for MgSO4 was 98.6%at 0.4 MPa.Scanning electron microscopy,atomic force microscopy,and attenuated total reflectance-Fourier transform infrared spectroscopy were used to characterize the chemical structure and morphology of the PA/GO NF membrane.The results showed that GO was successfully entrapped into the PA functional layer.Under neutral operating conditions,the PA/GO membrane showed typical negatively charged NF membrane separation characteristics,and the rejection rate decreased in the order of Na2SO4>MgSO4>MgCl2>NaCl.The PA/GO NF membrane showed better antifouling performance than the PA membrane. 相似文献
13.
基于哌嗪(PIP)与均苯三甲酰氯(TMC)界面聚合制备纳滤膜的原理,设计并合成了具有支化结构的三亚胺功能基团水相单体--均苯三甲酰哌嗪(TMPIP)盐酸盐,并与TMC界面聚合制得分子结构与TMC/PIP相同的TMC/TMPIP超薄纳滤复合膜。采用傅里叶红外光谱(FTIR)和扫描电镜(SEM)表征了复合膜皮层的化学结构和表面形貌,结果表明在聚砜底膜表面形成了膜厚为100 nm左右的TMC/TMPIP超薄皮层。通过与TMC/PIP复合膜对PEG 200水溶液的分离性能相比较发现,TMC/TMPIP复合膜因其高度的网络化结构和超薄皮层,因而具有更高的截留率和水通量。考察了TMC/TMPIP复合膜对水中不同盐的截留性能,其截留率顺序与TMC/PIP复合膜相同,而通量和截留率均优于后者。 相似文献
14.
An interfacial polymerization was used to fabricate dodecybenzenesulfonic acid (DBSA)‐doped polyaniline (DBSA‐PANI) nanorods with diameter range from 40 nm to 1 μm. The molar ratio of aniline to ammonium peroxydisulfate (APS), the concentrations of DBSA and reaction temperature had an effect on the morphology and size of products. It was found that lower concentration of DBSA and lower temperature will be helpful to the formation of rod‐like PANI nanostructures with a relative small diameter. UV–vis and FTIR measurements were used to characterize the chemical structure of the obtained samples. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
15.
BACKGROUND: Polyaniline (PANI) has attracted much attention in many fields due to its chemical and physical properties, and different nanostructures of PANI changing from one‐dimensional to three‐dimensional have been obtained. By changing the concentration of cetyltrimethylammonium bromide (CTAB), the morphology of hydrochloric acid‐doped polyaniline could be changed from one‐dimensional nanoneedles or nanowires with a network structure (50–100 nm in diameter) to three‐dimensional hollow microspheres (ca 400 nm in outer diameter) via combining interfacial polymerization and self‐assembly process. RESULTS These different nanostructures of PANI were proved using scanning electron and transmission electron microscopies. A plausible mechanism of the formation of the changeable nanostructures of PANI may be different from that of interfacial polymerization without surfactant or a traditional homogenous reaction system using CTAB as surfactant. CONCLUSION The results obtained from Fourier transform infrared spectrometry, X‐ray diffraction and the four‐probe method showed that the molecular structure of PANI does not change with increasing CTAB concentration, but crystallinity and conductivity of PANI increase with surfactant concentration. Copyright © 2007 Society of Chemical Industry 相似文献
16.
17.
18.
José Braulio Morales-Cuevas Sergio Pérez-Sicairos Shui Wai Lin Moisés Israel Salazar-Gastélum 《应用聚合物科学杂志》2019,136(42):48129
Nanofiltration (NF) membranes were fabricated by using piperazine (PIP) and trimesoyl chloride (TMC) by conventional and spray-applied interfacial polymerization methods, studying the effect of the application method for both phases, the number of applied layers, and the displacement speed for the spray application. A polysulfone ultrafiltration membrane was used as support. NF membranes were characterized by different spectroscopic, microscopic, and physicochemical techniques. Rejection capacity was evaluated for sodium chloride (NaCl), sodium sulfate (Na2SO4), and magnesium sulfate (MgSO4) salts; the decreasing rejection order was Na2SO4 > MgSO4 > NaCl for each NF membrane. NF membrane prepared with one layer of the sprayed out TMC solution and conventional application of PIP solution exhibited the highest salt rejection (99% for 1000 ppm Na2SO4) and a permeated flux of 10.28 L m−2 h−1 at 0.55 MPa. The modified method is a facile-reproducible preparation methodology that reduces the consumption of time, effort, and reagents leading to a scalable manufacturing process for separation technology. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48129. 相似文献