首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
磨削加工在机械加工中占有相当重要位置,淬火后工件表面的加工,及较高的尺寸精度和表面粗糙度,主要是靠磨削来保证。磨削加工所用的砂轮表面,是由无数磨粒组成的,每个磨粒相当一把刀具,所不同的是,大部分磨粒具有负前角和小后角。由于磨粒在砂轮表面的分布有高有低,很不规则,在磨削过程中,有些磨粒切削工件形成切屑,有些磨粒仅在工件表面上刻划出痕迹,还有一些磨粒即不切削也不刻划工件,而只是与工件表面产生滑擦,因为磨削速度很高(为车、铣床速度的20倍),这种刻划和滑擦将产生高达1000℃左右的温度,会引起被磨工件表层金相组织的变化。磨削所消耗的能量也是比较大的。因此,磨削过程比其他金属切削加工过程更为复杂。 1.磨削烧伤和磨削裂文产生的原因  相似文献   

2.
精密磨削近几年来中捷友谊厂发展很快,代替了一部分研磨、超精加工等加工方法,取得了很大的技术经济效果。 精密磨削,是使砂轮在运转过程中,其表面上的细小切刃,在宏观及微观方面构成均匀的、平整的切削表面,对工件进行微量切削加工。对于用粗粒度砂轮迸行精密磨削加工,欲获得砂轮这祥的切削表面,需使用较尖的金刚石(或金刚笔)配合以较小的修整用量,使金刚石在修整的过程中,不是将磨粒从砂轮的基体上整个的掀下来,而是将它破碎,在砂轮的表面上造成既有更多的切削刃,又较平整的切削表面,这就是基本出发点。要达到这个要求,最好是具备三个基本…  相似文献   

3.
工件旋转法磨削硅片的磨粒切削深度模型   总被引:2,自引:0,他引:2  
半导体器件制造中,工件旋转法磨削是大尺寸硅片正面平坦化加工和背面薄化加工最广泛应用的加工方法。磨粒切削深度是反映磨削条件综合作用的磨削参量,其大小直接影响磨削工件的表面/亚表面质量,研究工件旋转法磨削的磨粒切削深度模型对于实现硅片高效率高质量磨削加工具有重要的指导意义。通过分析工件旋转法磨削过程中砂轮、磨粒和硅片之间的相对运动,建立磨粒切削深度模型,得到磨粒切削深度与砂轮直径和齿宽、加工参数以及工件表面作用位置间的数学关系。根据推导的磨粒切削深度公式,进一步研究工件旋转法磨削硅片时产生的亚表面损伤沿工件半径方向的变化趋势以及加工条件对磨削硅片亚表面损伤的影响规律,并进行试验验证。结果表明,工件旋转法磨削硅片的亚表面损伤深度沿硅片半径方向从边缘到中心逐渐减小,随着砂轮磨粒粒径、砂轮进给速度、工件转速的增大和砂轮转速的减小,加工硅片的亚表面损伤也随之变大,试验结果与模型分析结果一致。  相似文献   

4.
不锈钢材料具有较大的韧性,进行磨削加工时砂轮表面容易被磨屑嵌塞和粘附,由于砂轮堵塞,使磨粒切削能力降低甚至丧失,导致磨削热增大,砂轮材料的导热性又差,从而导致磨削区的温度剧增,磨屑在高温高压的作用下与磨粒相互熔焊在一起。  相似文献   

5.
利用计算机数字模拟技术作为手段分析研究磨粒尺寸大小及形状对磨削加工过程和被磨例表面的影响。结果得出磨粒粒径大小影响到砂轮表层的磨粒中实际参加切削的磨粒数目,磨粒粒径越小,被加工表面粗糙度越小。由大大小小不同粒径磨粒构成的砂轮与单一粒径磨粒的砂轮相比,其被加工表面粗糙度要小得多。唐粒几何形状和磨粒表面微观粗糙度对被加工表面粗糙度影响不大。  相似文献   

6.
在前人磨削理论基础上对砂轮结构做了更接实际的随机性假设,应用计算机数字模拟技术对磨削全过程进行了模拟,获得了磨削过程和磨削表面的许多重要数据和结果,给出了砂轮表层的磨料中中切削的磨粒数目和切屑的长度、厚度和体积。在研究砂轮结构的基础上得出砂轮磨粒分布的随机性是磨削加工能产生表面低粗糙度的重要因素。对砂轮磨料粒度及砂轮修整的定量研究表面,要获得超低粗糙度值磨削表面不仅需要选择较细磨粒,而且需要对砂轮  相似文献   

7.
轴向磨削加工是以金刚石小砂轮的端部磨粒作为主切削刃来去除材料,用圆周部分内圆或外圆表面磨粒作为副切削刃对已加工圆柱面进行修磨的一种磨削加工技术。从轴向对工程陶瓷进行外圆或内孔加工时,一次切削的径向磨削深度(即背吃刀量)与进给速度分别可达5~10mm和200mm/min以上,实现了工程陶瓷外圆的高效低成本加工。利用该方法对陶瓷材料制成的发动机精密偶件出油阀套筒进行内孔加工,通过单因素试验,分析了不同参数组合下的砂轮磨损情况及各参数对砂轮磨损的影响,试验表明:砂轮磨损程度随磨削深度的增加而呈非线性增加;为使砂轮磨损最小化,主轴转速和工件转速应匹配,即二者的比值应控制在一定的范围内。  相似文献   

8.
研究高速磨削条件下砂轮线速度、切削深度等工艺参数对氧化锆陶瓷工件加工表面质量的影响。通过对单颗磨粒切削氧化锆陶瓷试件过程进行仿真,确定磨粒切削深度与切削速度对磨削力和磨削表面形貌的影响。同时,采用金刚石砂轮对氧化锆陶瓷进行平面磨削实验,获取磨削力和表面形貌等实验数据,对仿真结果进行实验验证。随着切削深度从2μm增大到8μm,单颗磨粒磨削力呈单调递增的趋势,工件表面质量逐渐恶化;当切削深度保持在2μm时,砂轮线速度对工件表面形貌影响不大;当切削深度加大到4μm以上时,提高砂轮线速度可以有效减轻磨削表面的破碎损伤。  相似文献   

9.
砂轮磨粒的尖端也如切削刀具的刀尖一样,在加工过程中不断磨损和变钝。然而,磨粒在磨削中的表现,却比刀尖在切削中的表现要复杂得多。因为磨粒在磨损到一定程度后,有可能产生破碎、脱落,露出新的锋刃并恢复其锐利性(即自锐),使加工能不断  相似文献   

10.
针对三维超声辅助磨削加工方法的研究,建立砂轮磨粒切削运动模型,推导单颗磨粒切削轨迹方程,通过仿真分析二维和三维超声辅助磨削单颗磨粒切削轨迹,初步得出三维超声辅助磨削有望得到更优的表面质量。通过三维超声辅助磨削加工试验并观测陶瓷试件的表面粗糙度和微观形貌,证明三维超声辅助磨削的陶瓷表面粗糙度值相对较小,表面轮廓相对平整,三维超声辅助磨削能得到比二维超声辅助磨削更优的表面质量。  相似文献   

11.
本发明是一种切入磨削装置,即成形磨削装置。 在内圆切入磨削或成形磨削时砂轮经常产生超负荷不良现象,即由于砂轮与工件的几何关系,内圆磨削的磨削宽度往往比外圆磨削大,有时还会发生冷却液及润滑油供应不足的现象。所以,内曲面加工常常要根据具体情况采用各种切削工具来加工。在形状复杂的情况下,用这类切削工具的加工工序长,耗时多;与磨削加工相比,表面精度和尺寸公差都低。 当润滑不良而砂轮超负荷时,由于聚集在磨削部位的空气中氧气的作用,在砂轮与工件之间会发生化学反应,从而产生烧伤。 本发明采用了一套喷射回转润滑装置(图1),把流…  相似文献   

12.
以曲线沟槽的磨削加工为目的 ,本文对金属结合剂杯形小直径 CBN砂轮端面磨削沟槽底面时的砂轮自锐 (Self- dressing)过程进行了研究。金属结合剂杯形小直径 CBN砂轮的自锐行为表现为磨粒磨损后的破碎产生新切削刃 ,磨钝磨粒的脱落和砂轮结合剂被磨屑去除产生新磨粒 ,保持了砂轮工作面上磨粒密度的相对稳定 ,维持了砂轮的锋锐性。通过提高砂轮硬度以期减缓磨粒脱落 ,增加单个磨粒的服务期限 ,试验结果表明已加工表面粗糙度 Rz小于 3.5 μm,砂轮磨损减小了 40 % ,磨削过程稳定 ,取得了良好的磨削效果  相似文献   

13.
陶瓷材料的超精密磨削加工   总被引:3,自引:1,他引:2  
对陶瓷材料超精密磨削加工的研究结果表明,陶瓷等脆性材料的磨削表面粗糙度主要与砂轮的平均磨粒尺寸、进给量等因素有关。只有当金刚石砂轮的平均磨粒尺寸小于18 .5μm 时,才能在塑性磨削模式下加工出表面粗糙度为rms4 .15nm 、 Ra3 .07nm 的高质量光滑表面。  相似文献   

14.
金属结合剂杯形小直径CBN砂轮端面磨削沟槽底面时 ,砂轮磨削力不随砂轮累积磨削行程的增加而增大 ,已加工表面粗糙度Rz 稳定在 4μm以下 ,处于持续稳定的正常磨削状态。这缘于磨削过程中CBN砂轮的自锐(Self-dressing)效应 ,即在砂轮磨削的同时砂轮结合剂被连续地去除 (CBN磨粒裸露体积增大 ) ,磨钝磨粒发生龟裂、破碎和脱落 ,不断产生新的磨粒切削刃 ,CBN磨粒切削刃密度保持动态稳定 ,砂轮维持在锋利状态。CBN砂轮自锐效应产生的机理是磨屑与冷却液形成的混合流体对砂轮结合剂产生冲击、冲刷和刻划作用产生了去除砂轮结合剂和梳理磨粒的效果  相似文献   

15.
光学玻璃塑性模式超精密磨削加工的研究   总被引:14,自引:0,他引:14  
陈明君  张飞虎  董申  李旦 《中国机械工程》2001,12(4):460-463,484
利用超精密磨床磨削加工6种典型的光学玻璃,先从理论上研究了脆性材料脆塑转变的临界值,然后对脆性材料作了大量磨削实验,实验结果表明,超精密磨削脆性材料时存在着断裂模式,断裂与塑性模式、塑性模式,这些模式主要由砂轮磨粒的切削深度进行控制,该磨削表面粗糙度与磨粒尺寸的大小,砂轮的进给量及玻璃的材料有关,当光学玻璃在塑性模式磨削时,其表面层不会产生任何裂纹缺陷,利用超精密磨床进行磨削加工,获得的表面粗糙度Ra低于5nm。  相似文献   

16.
一内圆磨削机理概述内圆磨削加工要比其他磨削加工(外圆磨削、平面磨削等)困难。原因是: 1.砂轮直径要比工件直径小,因此砂轮磨粒损耗快,砂轮直径在较短时间易产生变动。 2.高速旋转的小直径砂轮,其砂轮轴的轴承小,在整个体壳与砂轮主轴系统的刚性低。 3.用于高速回转轴承的使用条件限制,只能用低的砂轮线速度加工。 4.在砂轮直径接近于被加工工件的内径情况下使用时,砂轮易在工件表面打滑,磨削性能明显下降。上述的定性分析是显而易见的,但为了更  相似文献   

17.
超精密磨削技术是实现微/纳米加工的主要手段。系统深入研究超精密磨削过程的机理,洞悉磨削加工表面生成的内涵,成为超精密磨削加工技术的重要研究内容之一。提出一种新型的超精密磨削加工表面生成方法。基于Johnson变换和线性滤波技术,给出砂轮表面形貌数字生成方法。该砂轮表面数值生成方法克服了利用试验测量砂轮表面形貌所得数据而带来的误差,提高了磨削加工表面仿真分析的准确性。根据磨削运动学,建立磨粒运动轨迹方程、相互干涉条件和有效磨粒确定方法。据此,给出超精密磨削加工表面生成算法。通过数值计算生成不同统计学特征的砂轮形貌,并得到不同加工参数下磨削表面的表面形貌,仿真结果验证了所给算法的正确性和有效性。  相似文献   

18.
很多模具制造的材料具有淬硬性、耐磨性的特点,但是,经过磨削加工后模具表面往往容易产生烧伤、软化等影响模具良好使用的现象,磨削过的模具表面也容易产生残余应力和微观裂纹,因而降低了加工工件的质量。根据砂轮表面形貌建立砂轮磨粒模型,将单颗粒磨粒与4Cr5MoSiV1模具钢进行磨削试验,揭示磨削速度与磨削温度、磨削力之间的关系,为磨削表面质量控制和磨削工艺参数优化提供了理论依据。  相似文献   

19.
超磨粒(金刚石,CBN)砂轮的出现,使难切削材料的高精度、高效率加工成为可能。本文介绍日本利用超磨粒砂轮进行高效磨削加工的方法。一、高效磨削加工方法1.间歇进给磨削间歇进给磨削采用成形砂轮进行曲面磨削,在深切工件的同时进给量很小,用于要求保证工件形状精度的成形和深槽加工。间歇进给磨削的进刀量为往复磨削进刀量的100~200倍,其走刀量仅为往复磨削的1/100~1/200。间歇进给磨削前,要使用修整工具对砂轮表面进行创型,通过往复进给的循环操作,工件边缘与砂轮最初接触时不产生重复冲击,砂轮变形很小,有利于防止脆性…  相似文献   

20.
超精密磨削加工表面形貌建模与仿真方法宰   总被引:2,自引:2,他引:2  
超精密磨削技术是实现微/纳米加工的主要手段.系统深入研究超精密磨削过程的机理,洞悉磨削加工表面生成的内涵,成为超精密磨削加工技术的重要研究内容之一.提出一种新型的超精密磨削加工表面生成方法.基于Jobnson变换和线性滤波技术,给出砂轮表面形貌数字生成方法.该砂轮表面数值生成方法克服了利用试验测量砂轮表面形貌所得数据而带来的误差,提高了磨削加工表面仿真分析的准确性.根据磨削运动学,建立磨粒运动轨迹方程、相互干涉条件和有效磨粒确定方法.据此,给出超精密磨削加工表面生成算法.通过数值计算生成不同统计学特征的砂轮形貌,并得到不同加工参数下磨削表面的表面形貌,仿真结果验证了所给算法的正确性和有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号